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Abstract 
 

The cast & wrought (C&W) route is one of the earliest production techniques and still commonly 

used in the overall production of turbine components due to its low cost and processing benefits. 

However, the C&W route can not be applied to some modern disk alloys that contain high 

volume fraction of γ′ phase and refractory alloying elements. Therefore, the latest Ni-base disk 

alloys such as RR1000, Rene 95 and ME3 are produced by powder metallurgy processing routes. 

However, the requirement of clean powder and subsequent thermo-mechanical processing 

steps economically limit its applications in some cases. 

  

Recent development in fine grain ingot casting technology is demonstrated in this investigation. 

The experimental results indicate that it is possible to convert highly alloyed GH720Li alloy 

directly from fine grain ingot to billet without powder process. The experimental fine grain ingot 

is sound and crack-free, typically with an uniform grain size ASTM 1~3. Hot ductility of the fine 

grain ingot has been systematically studied by hot compression testing, optical microscopy and 

scanning electron microscopy. Based on these results, a hot die forged pancake was produced 

with an ASTM 7 fine grain structure, which demonstrates the potential of GH720Li alloy disk to 

meet the component technical requirement. 

 

Introduction 
 

The latest design of large high thrust aero-engines lead to ever increasing demands on materials 

with higher mechanical properties and temperature capability, especially for the materials used 

for disks [1, 2]. Traditional alloys such as Inconel 718 and Waspaloy become less viable 

materials. To meet the more demanding requirements, highly alloyed, high strength superalloys 

are required. By increasing the volume fraction of γ′ phase and adding strong solid solution 

hardening elements (W and Mo), the disk alloys such as RR1000, Rene 95 and ME3 were 

developed. However, such an increase in γ′ phase volume fraction, combined with increased 

refractory elements contents, make it difficult to process these alloys by the conventional 

vacuum induction melting plus vacuum arc remelting (VIM/VAR) ingot and traditional forging 

sequences used for Inconel 718 and Waspaloy because of segregation and cracking problems. 

Therefore, these alloys are produced by powder metallurgy technology. Generally speaking, 

powder metallurgy needs ultra clean powder as source material and its thermomechanical 

process is complicated and expensive, which economically limit its applications.  
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Alloy 720Li is a typical highly alloyed superalloy, which was originally designed for cast and 

wrought (C&W) land based gas turbine blades [3]. Alloy 720Li was also adopted for other 

applications such as turbine disks. It has been extensively used as turbine disk for aero-engines 

such as T800, T406, MA2100 and GMA3077 in C&W form [4, 5]. Alloy 720Li alloy powder is 

converted to billet disk production by hot extrusion and isothermal forging [6, 7]. However, large 

extrusion facilities are currently not available in China. Recent development of fine grain ingot 

casting technology makes it possible to process highly alloyed superalloy without powder 

metallurgy technology. The key procedures for this advanced C&W technology are as follows: 

(1) production of fine grain ingot, and (2) processing methods capable of converting the ingot 

into billet mainly including homogenization treatment and forging. This paper describes the 

development and optimization of processing methods from fine grain ingot.  

 

Experimental Procedure 

 

GH720Li is a high strength nickel-base superalloy. Its composition for this investigation is given 

in Table Ι. Several fine grain ingots have been produced by means of advanced casting methods, 

which involve controlling the superheat practices, mold heat extraction system and controlled 

dendrite growth process.  

 

Cylindrical samples with a diameter 10mm and a height of 15mm for Gleeble testing were 

machined from 1/2 diameter along the axial orientation of a fine grain ingot. Isothermal 

compression tests were conducted on Gleeble 1500 at temperatures 1110ºC~1150ºC, with strain 

rates of 0.001s
-1

~0.1s
-1

 and engineering strain of 40%~70%. Prior to compression, each 

specimen was soaked at the test temperature for 10min to obtain temperature uniformity. Load 

and stroke data from the tests were acquired by computer and later converted to true-stress strain 

curves. After the compression test, the specimens were air cooled. The deformed samples were 

sectioned through the longitudinal axis and metallographically prepared. The microstructure 

was examined by utilizing a Leica optical microscope and JEOL scanning electron microscope 

(JSM-5600LV).     

 

Table Ι Chemical composition of GH720Li by weight % 

Alloy C B Cr Co Mo W Ti Al Zr+Ce Ni 

GH720Li 0.02 0.02 16.3 14.32 2.93 1.18 4.88 2.4 Trace Bal. 

 

Experimental Results 

 

Fine Grain Ingot Casting Technology 
 

The experimental results indicate that the fine grain casting technique is capable of producing 

sound, crack-free fine grain ingot with an ASTM 1-3 grain size (Figure1a). Its microstructure 

exhibits eutectic γ+γ′ phases either at interdendritic or intergranular locations (Figure1b and c).  

Energy dispersive spectroscopy (EDS) results in conjunction with scanning electron microscopy 

(SEM) indicate that the most heavily segregated alloying elements are Ti and W with a 

segregation coefficient of 2.59 and 4.04, respectively. Therefore a homogenization treatment 

is necessary before processing to minimize cracking during forging.  
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Figure 1 Grain size (a) and microstructure (b)(c) of fine grain ingot GH720Li alloy  

  at as-cast condition 

 

Forging Process Development  
 

(1) Original Forging Approach 

Isothermal compression of as-cast condition samples at 1110ºC~1150ºC with strain rates 0.001s
-

1 
~ 0.1s

-1
 results in significant cracking even at low reductions (40%). In order to improve the 

forgeability of fine grain ingot, one stage and two stage thermal treatments were conducted 

before isothermal compression. The temperature was carefully selected according to γ′ solvus so 

as to prevent grain growth. Figure 2 show the grain structure after one stage and two stage 

thermal treatment, which indicate that most of eutectic γ+γ′ phases either at interdendritic or 

intergranular locations are all dissolved into solid solution and the grain growth is not evident 

when compared with the cast condition (Figure1 a).  

 

After thermal treatment, a series of compression trials were conducted to assess flow stress, 

material recrystallization and surface cracking. Figure 3 shows the sample surfaces after 

compression test. The effect of deformation parameters on recrystallization is shown in Figure 4. 

Based on these experimental results, the preferred forge process sequence consisted of one stage 

or two stage thermal treatment and combination of forge parameters of 1130ºC, 0.1s
-1

 with the 

forging reduction limited to 50% to minimize cracking.  
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Figure 2 Grain structure of the fine grain ingot after 

 (a) one stage (b) two stage homogenization treatment 
 

 

 
Figure 3 Isothermal compression samples after Gleeble tests at different conditions                         

 

 

(2) Optimizing Forging Process 

Although several experimental pancakes have been produced using above processing method, 

cracks were observed when forging reduction is beyond 50% due to the remanent eutectic γ+γ′. 

Moreover, incomplete recrystallization was also evident (Figure 4b and e). Therefore, 

improvement of forgeability achieved by just optimizing the thermal treatment and the 

deformation parameters were considered to be insufficient.  
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Figure 4 Recrystallization grain structure after deformation for GH720Li 

Samples deformed at 0.1s
-1

 (a)1110ºC (b)1130ºC (c)1150ºC after one stage homogenization 

Samples deformed at 0.1s
-1

 (d)1110ºC (e)1130ºC (f)1150ºC after two stage homogenization 

 

Genereux and Fahrmanm’s experimental results on an improvement in forgeability of highly 

alloyed superalloys indicate that an overage cycle before forging can not only improve the hot 

plasticity but also decrease the flow stress of the alloy [8, 9]. Moreover, this overage cycle can 

promote recrystallization during hot deformation and fine grain billet can be achieved. Delta 

processed Inconel 718 developed a fine, uniform grain microstructure with a δ phase overage 

cycle before forging [10, 11]. Therefore, a more sophisticated process was evaluated based on the 

results of the initial forging approach. The intention was to promote, through subsequent forging, 

(b) 

(c) (f) 

(a) 

(d) 

(e) 

 (a) 
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dynamic recrystallization resulting in an uniform, fine grain structure. 

 

Observing modest improvement in forgeability could be achieved through the thermal treatment, 

a method was developed to dramatically coarsen the γ′ precipitates. The desired method to 

improve forgeability of GH720Li is produced by taking advantage of the gradient in γ′ 

solvus from grain center to grain boundary. This γ′ solvus gradient is a result of composition 

gradient which exist in all castings. To coarsen the γ′ phase, the sample is heated to a temperature 

slightly below the solution temperature of the intergranular eutectic γ+γ′ to prevent grain growth. 

The key processing step is a slow controlled cool from this temperature through the γ′ phase 

formation range. A combination of enhanced high temperature diffusion and decreasing 

solubility for γ′ phase formers on cooling are believed to be responsible for the effectiveness of 

this γ′ phase coarsening cycle. Figure 5 shows the coarse dendrite or fan-shaped γ′ phase after the 

coarsening cycle. 

 

  
 

 
 

Figure.5 Microstructure of the specimen through the γ′ phase coarsening cycle  

(a) γ′ phase by OM (b)(c) dendrite or fan-shaped γ′ phase by SEM 
 

According to experimental results of the original forging approach, the specimens after the γ′ 

phase coarsening cycle were deformed at different parameters. Figure 6 illustrate appearance and 

grain structure of the deformed samples after the coarsening cycle. This γ′ phase coarsening 

cycle has provided a completely recrystallized structure at forging reductions as low as 50% in 

comparison with the original deformed samples after one or two stage thermal treatment (Figure 

6b and Figure 4e) and even the maximum reduction at 1130°C can reach up to 70% without 

(a) (b) 

(c) 
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cracking. Figure 4, Figure 6 and Figure 7 illustrate that the volume fraction of recrystallization 

for one or two stage thermal treatment is remarkably lower than that of the γ′ phase coarsening 

treatment deformed at 1130ºC-0.1s
-1

-50%. Furthermore, the flow stress obviously decreases in 

comparison with the original forge process (Figure 8).   

 

Therefore, the γ′ phase coarsening cycle before deformation not only improves hot plasticity but 

also achieves the 100% recrystallization grain structure for GH720Li. 

 

Utilization this advanced cast technique and followed by hot die forging, a trial pancake with 

ASTM 7 fine grain structure has been achieved (Figure 9). After a solution and double aging heat 

treatment, mechanical properties and microstructural evaluations have been obtained on this trial 

pancake. Table П and Table Ш indicate that the trial pancake provided acceptable tensile and 

stress rupture properties, and they are well above the goal values.  

 

  
 

 
 

Figure 6 Samples deformed at 0.1s
-1

, 50% (a)1110ºC (b)1130ºC (c)1150ºC  

after γ′ phase coarsening cycle 

 

 

 

 

 

 

 

(c) 

(a) (b) 
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Figure 8 Flow stress of GH720Li after  

different treatment before deformation 

 

 
 

 

Figure 9 GH720Li trial pancake (a) and grain structure (b)  

after the optimization forging technique 

 

Table ΙΙ Tensile properties of the trial pancake 

Temperature, °C 
Ultimate Strength, 

MPa 

Yield Strength, 

MPa 
Elongation, % 

Reduction of 

Area, % 

25 1525 1168 11.8 14.6 

Goal at 25 1480 1050 7 9 

650 1392 1066 10.5 14.2 

Goal at 650 1300 975 7 9 

 

Table Ш Stress rupture properties of the trial pancake 

Temperature, °C Stress, MPa Stress Rupture Life, h Elongation, % 
Reduction of 

Area, % 

680 830 305.3 12.80 19.56 

Goal at 650 830 25 4 10 

 (a)  
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Conclusions and Further Developments 

(1)  This work described in this investigation clearly demonstrates the feasibility of converting 

GH720Li alloy directly from fine grain ingot to forged pancake without powder process.  

 

(2)  Remarkable forgeability improvement of highly alloyed superalloy GH720Li can be 

achieved with a γ′ phase coarsening pre-heat treatment process. 

 

(3)  Additional property testing is in process to validate that high property levels can be 

consistently achieved. This development will lead to form a cost effective production route for 

highly alloyed superalloy forgings.  
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