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Abstract 

 

Experimental results on hot deformation and dynamic structural processes of nickel based alloy 

Inconel 718 are reviewed. The focus is the analysis of dynamic precipitation processes which 

operate during hot deformation of these materials at elevated temperatures. Hot compression 

tests were performed on the solution treated precipitation hardenable nickel based superalloy 

Inconel 718 at 720-1150°C with a constant true strain rates of 10
-4

 and 4x10
-4

s
-1

. True stress - 

true strain curves and microstructure analysis of the deformed nickel based superalloy is 

presented. The properties and dynamic behaviour are explained through observation of the 

microstructure using standard optical, scanning and transmission electron microscopy. Structural 

observations of solution treated Inconel 718 deformed at high temperatures, reveal non uniform 

deformation effects. The distribution of niobium-rich carbides were affected by localized flow 

within the strain range investigated at relatively low deformation temperatures 720 - 850°C. 

 

Introduction 
 

The capability of material to undergo plastic deformation is one of the most exceptional 

characteristics of metals and alloys. This capability is utilized in most forming operations to 

obtain the required final shape for many products. Obtaining the appropriate microstructure that 

guarantees suitable properties for the final product is the main goal of most forming operations. 

Subsequently chemical and phase composition, microstructure and technique of deformation or 

even its parameters plays a crucial role in the plastic deformation process. These factors affect 

the strengthening kinetics, the microstructure and thus the mechanical properties of a material. 

Cold and hot-working are the most frequently used techniques for forming metals and alloys. 

During cold-working, intermediate annealing is repeatedly required to remove the work 

hardening effect through recovery and recrystallization of the material. Both processes occur not 

only under static conditions but also under dynamic conditions in addition, i.e. during high 

temperature deformation. During the last decade the mechanisms involved in hot-working of 

metals and alloys have been extensively investigated. The most common softening mechanisms 

include dynamic recovery (DR) and dynamic recrystallization (DRX). At relatively low strain 

rates a precipitation process may operate during hot deformation of solution treated age 

hardenable alloys. This phenomenon is known as dynamic precipitation (DP), and is defined as 

precipitation during deformation of solution treated alloys below the solvus temperature. DP may 

interact with other structural processes during hot deformation and has an effect on the flow 

stress as well as the final microstructure and thus the properties of the material. DP usually 

increases the total hardening of the material due to retardation of both DR and DRX by 

dispersive particles growth. The amount of strengthening during hot deformation resulting from 
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dynamically precipitated particles depend on their morphology, strength and distribution within 

the matrix. During hot deformation of age hardenable alloys the change of particle distribution 

and their morphology may also affect the microstructure and material properties. In particular, 

particle morphology may be affected by the dynamic coarsening of precipitates which might 

develop during hot deformation of some alloys. 

A fundamental feature of plastic deformation is the homogeneity of strain distribution. It is 

commonly accepted that at low temperatures and high strains, flow localization may develop and 

affect the material ductility. On the other hand, hot-deformation at intermediate temperatures 

may also result in localized plastic flow and nonhomogenous deformation. Flow localization, as 

a result of substructure instability and collective motion of a large number of dislocations 

characterizes coarse slip or shear banding, Luders bands and the Portevin-LeChatelier effect. 

Kink bands and mechanical twins may also be considered as  an individual form of flow 

localization. Coarse slip is usually used to describe the localized flow within individual grains, 

whereas shear bands traverse many grains very often without any significant relation to the 

position of easy glide systems plane. In pure metals and single phase alloys, shear bands have 

been found to be preferential sites for the nucleation of both static and dynamic recrystallization.  

It is widely believed that in age hardenable alloys, shear bands and dislocation substructure 

produce preferred sites for nucleation of precipitates, thus enhancing the nucleation. These same 

features also are believed to enhance the particle growth rate during hot deformation as a result 

of higher vacancy concentration produced by intensive straining as well as increased dislocation 

pipe diffusion. The study of processes which are associated with dynamic aging of 

supersaturated solid solution during hot deformation may turn out to be very complicated 

because of the mutual interaction between dynamic precipitation and the structure resulting from 

the deformation process. 

The stress-strain curves for metals and alloys obtained during hot deformation are typically 

characterized by an initial hardening followed by either steady-state flow, single-peak or 

multipeaks behavior depending on the material, deformation temperature and strain rate. It has 

been reported that for materials which display steady-state flow after an initial hardening range, 

the flow stress level was controlled by a sole DR process. Generally,  σ-ε characteristic with the 

flow stress increasing to a peak (initial strain hardening) and then decreasing to a steady state is 

typical for hot working accompanied by DRX. The modification of particle morphology and/or 

the material texture may also result in the development of a flow stress peak. Localized plastic 

flow has been found to be responsible for flow softening after the initial peak in some hot 

deformed materials. Therefore flow softening can not be used for a simple DRX detection and 

careful structural observations should always be performed to analyze structural processes which 

are responsible for the material softening during hot deformation. 

The contribution of flow localization to the strain hardening or flow softening and the flow 

stress-strain behavior during hot deformation of precipitation hardenable alloys is still a subject 

of extensive research. The interaction between the flow localization and dynamic precipitation 

process has been the subject of very limited research [1-13]. For instance, the retardation of 

dynamic recrystallization due to dynamic precipitation was tested for HSLA steels [4-7]. It 

should be noted that the deformation process in HSLA steels have been assumed to be 

homogeneous. However, the homogeneity of the deformation was not examined during the 

research cited.  

There is a shortage of data which refer to specific features of phase transformation processes in 

precipitation hardenable alloys. Moreover, the existing data does not allow generalizing 

structural features of DP and simplifying structural description of the process.  
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The experiments on hot deformation of age hardenable alloys and the analysis of DP process 

have a practical aspect. This interaction could become an important feature of high temperature 

performance and may also the production of specific structures of materials. 

 

Inconel 718 is  relatively the largest nickel base  alloy since its commercial utilization  in 

1965. It is a nickel based precipitation hardenable alloy, containing major additions of Fe, Nb 

and Mo. Minor contents of Al and Ti are also present. Inconel 718 combines good corrosion and 

high mechanical properties with excellent weldabilitty. It is used in parts of gas turbines, rocket 

engines, turbine blades, and in extrusion dies. Superalloy Inconel 718 is extensively used for in 

aerospace industry especially in high temperature applications. It has been also widely employed 

in power and nuclear industry. Due to its relatively high mechanical properties and 

microstructural stability at elevated temperature it has also found its place  in the automobile 

industry. It is used for parts in the  turbocharger. The most important method of increasing its 

mechanical properties is  through precipitation hardening. Good mechanical properties of the 

Inconel 718 can be achieved by choosing proper heat treatment parameters. It is important to 

produce  the optimum distribution of  the  precipitate, phase characterized by uniform and 

suitable particulate size. The precipitation hardening process consists of solution annealing, 

quenching and aging heat treatment..  

 

Material 

 

In order to investigate the effect of the hardening phases on hot deformation behaviour, the 

uniaxial, isothermal compression tests at different temperatures and two strain rates were 

conducted on the solution treated precipitation hardenable nickel based superalloy Inconel 718  

of composition given in table 1. 
 

Table 1. Chemical composition of Inconel 718 (wt.%) 

C    0.0197 

P    <0.011 

S    0.0064 

Cr    17.957 

Si    0.0640 

Nb    4.5880 

Co    0.0527 

Zr    0.0159 

Ta    0.0221 

Ti    0.8734 

Fe    16.665 

Mo    2.6400 

Al    0.4917 

Mn    0.0537 

V    0.0137 

W    0.01322 

Ni    balance 
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Shear band development and flow localization is expected during hot deformation of Inconel 

718 alloy which affects both mechanical behaviour and microstructural features. Precipitation 

occurs during aging while the samples are compressed making the alloy suitable for studying the 

interaction of flow localization and dynamic precipitation process. To intensify these 

phenomenons the alloy has been compressed at two relatively low constant strain rates (10
-4

, 

4x10
-4

s
-1

) within the temperature range corresponding to temperatures of precipitation of the 

hardening phase up to a true strain of 1.9. Elongated compression testing made it possible to 

reach sufficient deformation and deformation time required for diffusion to control processes 

developing during the deformation test. Computer-controlled, Gleeble test equipment was used 

for the compression test. The cubicoidal samples (20x10x20mm) were conductive heated to 

1150°C at heating rate of 3°C/s, held for 300 s and finally cooled to the compression 

temperature. The temperature was controlled by a type K thermocouple inserted and welded in 

an opening hollowed out in the central part of the sample by spark erosion technique. Three 

additional thermocouples were used to acquire the distribution of the temperature from one of the 

faces to the centre of the specimen. A combination of graphite and molybdenum foils was used 

to reduce the friction between the anvils and the specimen as well as the gradient of temperature 

along the specimen. The deformation for all the tests was controlled by the stroke and measured 

by means of a loadcells attached to the jaws. The tests were carried out in an argon atmosphere. 

The flow stress values under two different low strain rates over a range of temperatures (720-

1150°C) were measured. Additionally the microstructure was examined using standard optical 

and electron microscopy techniques, SEM (Hitachi S-3400) and TEM (STEM) - (Jeol 2100). 

The present research work contributes some new information about the precipitation process 

which occurs in solution treated nickel based superalloy deformed at elevated temperatures and 

was inspired by the studies of previous researches performed on Cu-Ni-Si-Cr-Mg, Cu-Ti and low 

carbon steel [1-6,14,20]. The strain/precipitation interaction have revealed much more complex 

structural processes than those reported for HSLA steels [4]. Non-uniform deformation was 

observed during hot deformation particularly, which was found to have an effect on dynamic 

structural processes and, consequently, the structure and mechanical properties of the hot 

deformed alloys. The plastic instability resulted from the interaction of discontinuous 

precipitation and shear bands development. The flow localization was accompanied by dynamic 

particles coarsening within shear bands. The flow stress-strain behavior of Cu-Ni-Cr-Si-Mg alloy 

was affected and controlled by dynamic precipitation and its interaction with the strain 

localization. Additionally, the dynamic coarsening within shear bands was reported to be 

responsible for further flow softening during hot compression of the material. The shearing 

process was found to be a self-induced one, i.e. the flow localization accelerated discontinuous 

precipitation and the precipitation coarsened within the sheared area, which promoted further 

flow softening. In order to test the interaction of deformation with the precipitation process, hot 

compression tests were performed on the nickel based superalloy Inconel 718. In718 alloy was 

chosen since it is hardenable and therefore suitable for testing continuous precipitation 

interaction with deformation during hot deformation. Thus, the purpose of the described 

experiments was to study the mechanical behavior and related structural changes that take place 

during hot deformation of supersaturated Inconel alloy below the solvus temperature (dynamic 

precipitation conditions). Emphasis was placed on the interaction of precipitation with structural 

inhomogeneties that may develop during hot deformation. The main goal was to answer the 

question if the precipitation affects the deformation mode and, if nonuniform deformation 

induces dynamic coarsening of particles within shear bands. The experimental results may allow 
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a generalized description of the DP process in alloys undergoing multi-step phase transformation 

including continuous precipitation and discontinuous precipitation. 
The effect of deformation temperature on the true stress-true strain curves for the alloy deformed 
at strain rates of: 10

-4
; 4x10

-4
s

-1
 and temperatures of 720-1150°C is shown in figure 1. 

 

a) b) 

  

Figure. 1. True stress-true strain curves for Inconel 718 alloy deformed at different temperatures 

and a strain rate of a) 10
-4

 s
-1

 and b) 4x10
-4

 s
-1

 (the deformation temperature was indicated in the 

figure). 

 

The stress-strain curves for both strain rates evaluated do not give a true indication of a 

stationary plastic flow in the temperature range (720-850°C) due to fracture of the samples. The 

classic interdependence of the flow stress and deformation parameters can be seen, namely: the 

flow stress increased with decreasing deformation temperature and increasing strain rate. This 

behavior is similar to the results obtained by Guimaraes and Jonas [21]. One must notice two 

distinguishable regions on the flow stress curves of the solution treated samples of Inconel alloy 

deformed at relatively low temperature, namely: 720, 800 and 850°C and with strain rate of 10
-4

 

s
-1

 (see Fig. 1). The first region, which occurs at an applied strain not exceeding 0.4, is 

characterized by almost uniform work hardening to a hump due to effective static precipitation 

within the alloy. The second region is characterized by a rapid flow softening followed by 

sample fracture at strain not exceeded the value of ε ≈0.6 (Fig. 1). However, the flow stress of 

the samples deformed at these temperatures with higher strain rate (4x10
-4

 s
-1

) increased to a 

peak value and then rapidly decreased as the strain further increased (Fig. 1b). The typical 

structure of the solution treated Inconel sample deformed at 720°C with both strain rates is 

shown in Fig. 2. Coarse slip bands in the grain interiors and localized flow shear bands were 

observed. Non-uniform deformation and coarse slip bands were also observed in the 

microstructure of the samples of Inconel 718 deformed at 800 and 850°C (Fig. 3).  

Development of cracks followed by fracture in the flow softening range was also observed in the 

alloy deformed at these deformation temperatures but at higher strain rate of 4·10
-4

s
-1

. However, 

the effect was limited to the central part of the compressed sample and did not cause a failure of 

the sample before reaching its imposed maximum strain, as occurred in the samples deformed at 

the same temperatures (720-850°C) with the lower strain rate 4x10
-4

s
-1

.  
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a) b) 

100 mµ

Shear band

Shear band

 

Figure. 2. Optical micrograph for the sample of In718 deformed at 720°C, strain rate of 

 a) =10
-4

 s
-1

 i b) =4x10
-4

 s
-1

. 

 

a) b) 

 
Figure. 3. Micrograph of the alloy deformed at 800°C, strain rate of a) 10

-4
s

-1 
and b) 4x10

-4
s

-1
. 

 

Microstructural examinations of the samples revealed sites where preliminary flow localization 

caused localization of the hardening phases. One can see on the micrographs of the Inconel alloy 

deformed at 720°C at both strain rates columnar particles distributed along shear bands (see 

regions marked with arrows in the figures 2 and 3). Microshear bands may induce localized 

shearing within neighbouring grains due to the local stress concentration at the grain boundary 

which results in shear band development throughout those grains. As seen in the elemental maps 

in Fig. 4, the regions enriched in Nb correspond to the formation of NbC precipitates. 
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Figure. 4. Elemental maps of precipitates in Inconel 718 alloy deformed AT 800°C and strain 

rate of 4x10
-4

s
-1

 

 

Fig. 5 shows a typical EDS spectrum of the particle from Fig. 4 (marked with red cross), from 

which it can be preliminarily concluded that the precipitate contains Nb, which is carbide 

formers, but contained appreciable amounts of Cr, Fe and Ni in addition to Ti. The presence of 

Cr, Fe and Ni in the EDS spectrum may be associated with matrix elements, or could be 

attributed to the nature of the carbides. 

 

 
Figure. 5. EDS-spectra acquired in positions indicated by the red cross in Fig. 4 

 

Further confirmation of the carbides was needed and was carried out by TEM studies. TEM 

observations of the samples deformed at 720 and 850°C with both strain rates confirmed that 

localized deformation may promote intensive dynamic precipitation and coarsening of the 

particles within shear bands (Fig. 7 and 8). In conformance with the findings from scanning 

electron microscope SEM, Nb-rich carbides were observed by TEM. These carbides are usually 

of irregular shape and were most often found within shear bands. The carbide is shown in Fig. 6 

along with a diffraction pattern from the particle and its surrounding matrix. The particle 

contained mainly Nb, with a small amount of Ti and Cr. It has a cubic structure with lattice 

parameter a=0.43nm, which matched well with the Nb-type carbides (a=0.44nm) reported by 

Wilson [23]. 
 

 

 

389



a) 

 

b) 

 
c) 

 
:  (3.6A) - [112]γ

:  (3.6A) - [001]γ

:  NbC(4.3A) - [116]  
d) 

 
Figure. 6. Nb-rich carbides in the sample of Inconel 718 deformed at 720°C with strain rate of 

10
-4

s
-1

; a) TEM bright field, b) TEM dark field, c) indexed diffraction pattern (SADP) – zone 

axis was [-111], d) EDS spectra of analyzed particle. 
 

There is no crystallographic orientation relationship between particle and the matrix. Similar 

particles were often observed within the localized flow areas of deformed microstructure of the 

examined Inconel. These examinations indicate that the particles are associated with secondary 

NbC. The crystallographic orientation of the particles appears to be related to that of the matrix 

on one side of the shear band. Based on the diffraction from the particle and its surrounding 

matrix, the following matrix-particle relationships were obtained: 
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(112)
γ
/(116)particle and (001) γ

/(116)particle. The EDS spectra showed the particles to be rich in 

Nb, but also contained some amounts of Ti, Cr and Fe. EDS linear analysis from a typical, large 

particle showed that this type of particle contained mainly Nb, which indicates that these 

particles are NbC carbides (Fig. 6e). 
 

a) b) 

 
 

 
Figure. 7. Microstructure of solution treated samples deformed to 1.8 true strain at 800°C, strain 

rate of 10
-4

s
-1

. 

 

Figure. 8. Microstructure of the alloy subjected to compression test at 850°C, strain rate 

of 4·10
-4

s
-1

. γ" phase precipitation in the matrix and carbides phase  

precipitation within shear band. 

 

A steady state flow stress range, following the flow stress maximum, was observed during high 

temperature deformation (900, 1000, 1050, 1100 and 1150°C) (figs. 1). A single peak stress-

strain curve observed at high temperatures has resulted from dynamic recrystallization. The 
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characteristic shape of the stress-strain curves indicated that the structural softening mechanism 

for the alloy deformed at higher temperatures was limited to the dynamic revocery. However, it 

was noted that dynamic recrystallization was a process which has a crucial effect on the final 

value of the flow stress (Fig. 9-13). From this point of view, it seems clear why there was no 

indication of fracture or flow localization and why no arrangement of precipitations due to 

heterogeneous deformation was detected. 

 

 

Figure. 9. Optical micrograph for In718 sample deformed at 900°C, strain rate of 4x10
-4

s
-1

. 

 

 
Figure. 10. Optical micrograph for  In718 sample deformed at 950°C, strain rate 

of 4x10
-4

s
-1

. 

 

The transmission electron microscopy of the compressed Inconel 718 confirms the presence of 

recrystallized grains - see figure 11.   
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a) b) 

250 nm

 

 

Figure. 11. Coarse recrystallized grains observed by TEM. Sample deformed at 900°C, strain 

rate of 4x10
-4

s
-1 

 

a) b) 

200 nm

 
200 nm

 
 

Figure. 12. TEM micrograph of the specimen deformed at 1150°C, strain rate of 4x10
-4

s
-1

. 
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Figure. 13.  Optical micrograph for In718 sample of deformed at 1150°C, strain rate of 10
-4

s
-1

. 

 

Conclusions 

 

The dynamic behavior was explained through observation of the microstructure using standard 

optical, scanning and transmission electron microscopy.  

 

Structural observations of solution treated Inconel 718 deformed at high temperatures, reveal non 

uniform deformation effects. The distribution of carbides were affected by localized flow within 

the strain range investigated at relatively low deformation temperatures 720 - 850°C.  

 

It was found that most of the carbides that precipitate within shear bands resulting from on-going 

deformation process were Nb-rich particles. These are hypothesized to be NbC. Carbides 

observed with TEM technique were 20 times smaller to those observed by scanning electron 

microscope SEM. A general conclusion follows from the consideration of the role of shear 

banding in the material structure – this particular mode of deformation may be used as a method 

of microstructure control. Oriented arrangement of the secondary phases may significantly 

reinforce the strength of a material without deterioration of the material ductility, as it was 

observed in case of Fe-Ni [6] and Cu alloys [1-3]. It is interesting to consider a condition when 

shear bands are formed in deformed material. These localized fields of internal stresses usually 

show some spatial distribution with long range periodicity. Since shear bands act as preferred 

sites for nucleation of second phases, the arrangement of the products of decomposition of 

unstable matrix should also reflect this periodicity. Hence, one may anticipate in the 

microstructure of the compressed material linear ordering of hardening phases similar to the 

distribution of shear bands, as well as their significant influence on the mechanical properties of 

material. 
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