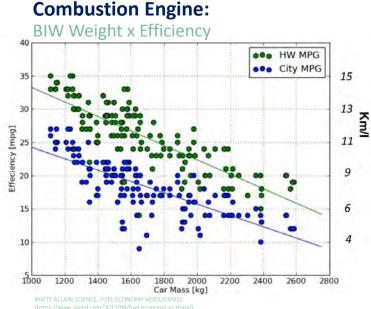

NIOBIUM IN ADVANCED MATERIALS


ACBMM Niobium N5

WHY NEW STRUCTURAL MATERIALS FOR AUTOMOTIVE APPLICATIONS?

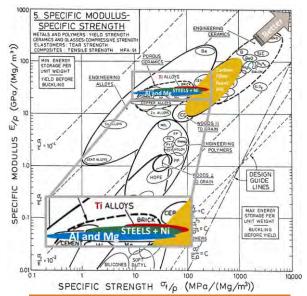
AUTOMOTIVE DESIGN REQUIREMENTS

Global fuel efficiency regulations

ELECTRIC CARS

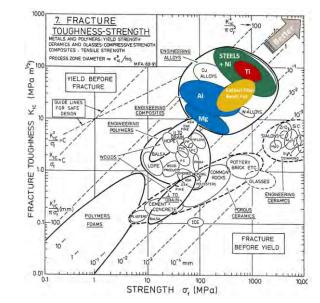
In addition to the other advantages:

- Light Body to compensate for
- the additional battery weight
- Also Important:
- Cost and Packaging purposes / easy to engineer geometrically to accommodate battery volume.


Source: Published on Aug 25, 2014. 6/4/2014 - International Workshop on Technology and Policy Solutions: GFEI / ICCT China

00000-

KCBMM Niobium N5


LIGHTWEIGHT & SAFETY

Lightweighting: Strength with Lowest Mass

NOTE: Low strength and low density may lead to good specific strength but large volume (thick sections)

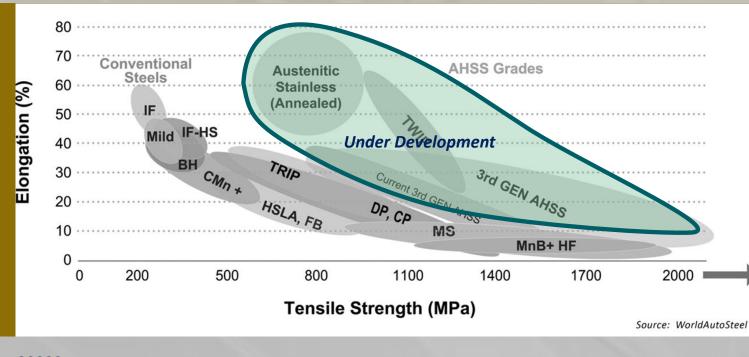
Safety: Toughness

Ashby plot, available at https://www.lehigh.edu/~intribos/Resources

CONCLUSION

• Including cost considerations steel is the best performer and Aluminum is second. They are most extensively used as structural materials

• Other materials: used in spot applications.


• Multimaterials concept: challenge for assembly and corrosion, which has been solved in several cases

NIOBIUM IN STEELS

STRENGTH AND DUCTILITY: INVERSE RELATION

Option:

Grain refinement increases strength without loss of ductility Niobium: key effect in refining the grain of steels

> KCBMM Niobium N5

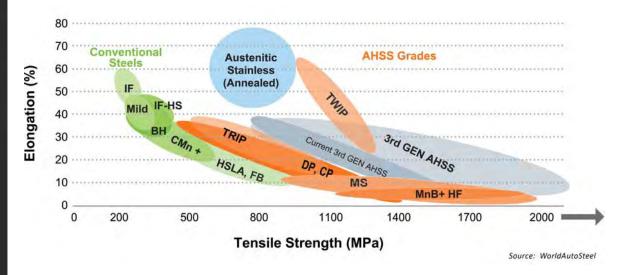
00000-

NIOBIUM IN STEELS FOR AUTOMOTIVE INDUSTRY

- ✓ Makes a lightweight design of vehicles a reality
- Increases steel strength and toughness
- ✓ Allows car body structures to be lighter
- ✓ Improves crash safety.

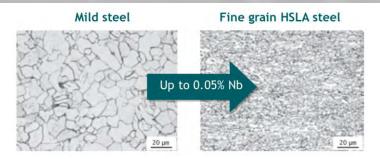
300 grams of niobium in the steel of a mid-size car

Reduces its weight by 200 kilograms


Results in fuel economy of one liter per 200 kilometers driven, and much lower emissions (increase efficiency in 0.6 to 1.5 km/l)

MANUFACTURING ABILITY

- Trip: complex manufacturing process
- DP: difficult local formability (forming defects)
- Martensitic (PHS): instability in process (furnace and limited ductility)
- Twip and Austenitic: high alloy content and cost challenges
- 3rd Generation: in development

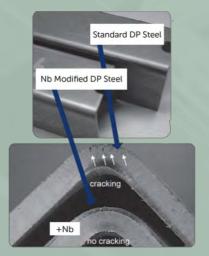

SUMMARY:

Niobium increases strength and toughness simultaneously, enabling high strength steels with good formability or process reliability

Compared to mild steels, the alloy balance of HSLA steels is based on the reduction of carbon content to improve toughness and weldability.

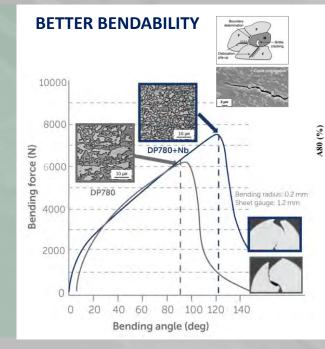
EXAMPLE 1: HIGH STRENGTH LOW ALLOY STEELS (HSLA)

	STRENGTH	TOUGHNESS	FORMABILITY	WELDABILITY
Carbon content	++			
Solid solution hardening	+	- (+)	-	- (+)
Cold forming (Dislocation hardening)	+	-		Neutral
Precipitation hardening	+		.	10-01
Grain refinement	+	++	+	+

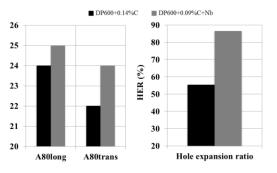


Typical composition: 0.05-0.09%C, 0.02-0.05%Nb, others: Mn, Si, Ti, V

Strength and ductility range (reference figures): YS: 260 MPa-550 MPa Elongation (ef): 16%-28%


EXAMPLE 2: DUAL PHASE STEELS

REDUCTION OF CRACKS



Bendability test demonstrating that the niobium modified DP steel can be submitted to tighter angles before fracture. The images show results after bending to more than 90 degrees, with cracks in the conventional steel but not in the niobium modified steel.

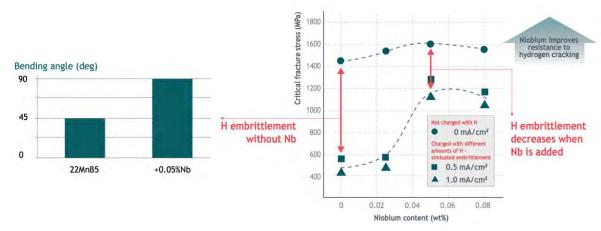
Source: H. Mahrbacher. Intl. Symp. on New Developments in Advanced High-Strength Sheet Steels, AIST, 2013, p. 319-329

GRAIN REFINING + LOWER C: MUCH HIGHER HE

Typical composition

0.07-0.20%C, 0.01-0.03%Nb, others: Mn, Si, Cr, Mo

Strength and ductility range (reference figures): YS: 450 MPa-1,100 MPa Elongation (ef): 5%-25 %


A Pillar DP980

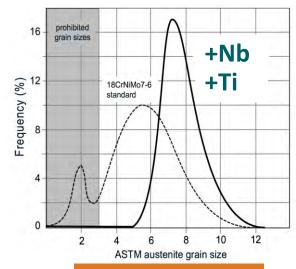
EXAMPLE 3: PRESS HARDENED STEELS

IMPROVED BENDABILITY

00000

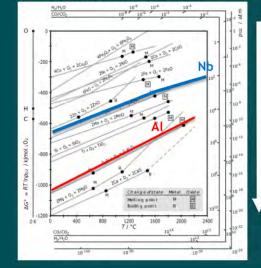
RESISTANCE TO H-EMBRITTLEMENT

Typical composition: 0.15-0.25%C, 1.0-1.4%Mn, 0.02-0.04%Nb, others: B, Cr, Mo, Si


Strength and ductility range (after heat treating – final condition): YS: 1,000 MPa-1,900 Mpa Elongation (ef): 5%-10%

Niobium controls grain growth during heating to press-hardening, leading to better bendability. In addition, Nb nano carbides decrease the mobility of H, reflecting in better resistance to hydrogen embrittlement

> KYCBMM Niobium N5

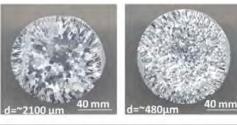

EXAMPLE 4: GEAR STEELS

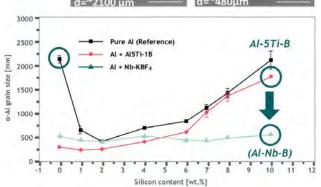
FINER GRAINS / POSSIBILITY HIGH T CARBURIZING

OTHER ADVANTAGES: ~30% less distortion ~10 to 20% better fatigue + cleanliness effect

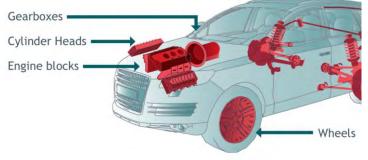
Ellingham Diagram

Niobium control in grain growth is more effective than Al, leading to:i) smaller grain size andii) lower amount of Al inclusions.Both factors lead to betterfatigue life.





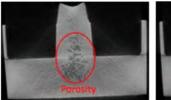
3. NIOBIUM IN ALUMINIUM

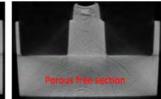

NIOBIUM IN ALUMINIUM CAST PARTS

BACKGROUND

MAIN APPLICATIONS

M. Nowak, L. Bolzoni , N. Hari Babu. Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Materials and Design 66 (2015) 366–375. BCAST


00000-

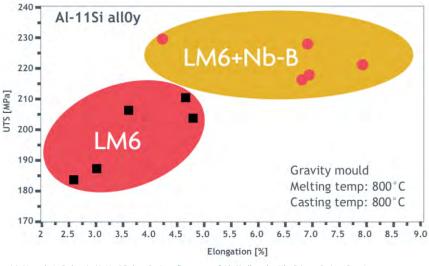

EXAMPLE 5: IMPROVING CASTABILITY OF HIGH SI ALLOYS

NIOBIUM ADDITION CREATES FINE AND UNIFORM GRAIN STRUCTURE

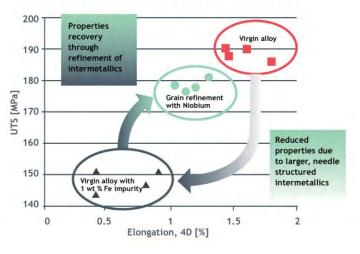
- Improving strength
- Reducing casting defects and shrinkage porosity
- Consistent across thin and thick sections

ENABLES LIGHTWEIGHTING

Al-9Si-2Cu alloy


Al-9Si-2Cu alloy with Al-Nb-B

Fine and uniform grain structure in Al-Si alloy with Al-Nb-B master alloy addition


EXAMPLE 6: IMPROVING MECHANICAL PROPERTIES AND RECYCLABILITY

HIGHER STRENGTH AND SAFETY

M. Nowak, L. Bolzoni , N. Hari Babu. Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Materials and Design 66 (2015) 366–375. BCAST

MORE TOLERANCE FOR IRON CONTAMINATION

Recovery of properties in Fe-rich aluminium scrap

KJCBMM Niobium N5

SUMMARY AND CONCLUSIONS

00000

- New advanced materials enable car makers to meet constant need to increase efficiency and safety whilst cutting cost and increasing performance
- Niobium steels have increased strength in combination with adequate formability (cost) and toughness (safety). Important either for current high strength steels and for new steels under development
- In Aluminum cast alloys, Niobium can reduce casting defects and potentially increase mechanical properties and recyclability
 - Enabling use of cast Aluminum alloys in new applications
 - Large scale production of Aluminum cast parts

