"Opportunities for Aluminium Components in Automotive Applications"

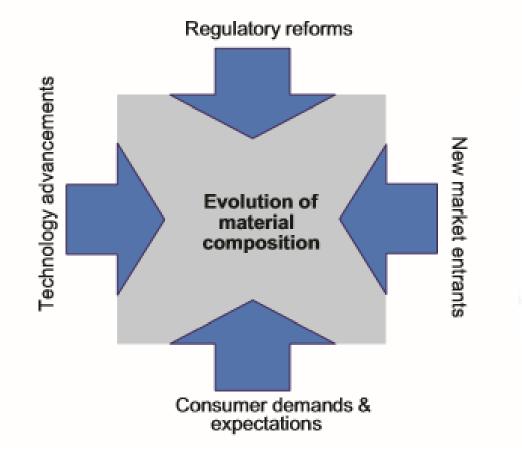
Jesse Wili Paegle Filho JWP Engineering & Consulting Brazil

ALUMINIUM IN AUTOMOTIVE INDUSTRY

Aluminium in Automotive Industry

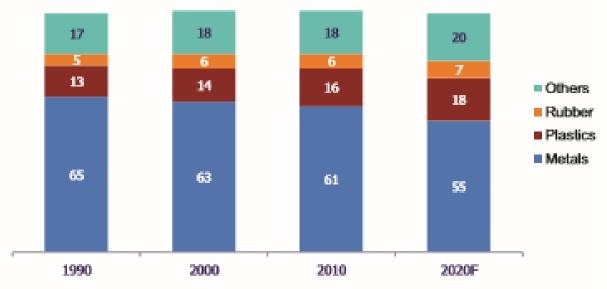
Rolled Products

Cast & Extruded Aluminium



ALUMINIUM IN AUTOMOTIVE INDUSTRY

Material application strategy


Key drivers of material composition evolution

Material application strategy

Average material composition of a passenger vehicle (%, 1990 – 2020F)

Source: A.T. Kearney, 2012 Note: Due to rounding, percentages may not total 100%

Aluminium in Automotive Industry

- The usage of aluminum in automobiles has been gradually increasing;
- ✓ Improves vehicle performance. Reduces CO2 emissions and Boosts fuel economy;
- Pound for pound, aluminum can absorb twice the crash energy of mild steel and it can provide a weight savings of up to 50 percent compared with the traditional mild steel structure. We must keep in mind that the AHSS evolution in the last years was impressive and it is economic competitive.

- Aluminum is the second-most used material in automobiles
- ✓ It has the potential to become the most-used, as new aluminum alloys are made to deliver more value than steel.
- At the end of a vehicle's life nearly
 90 percent of the aluminum, on average, is recycled.

Better performance and new possibilities

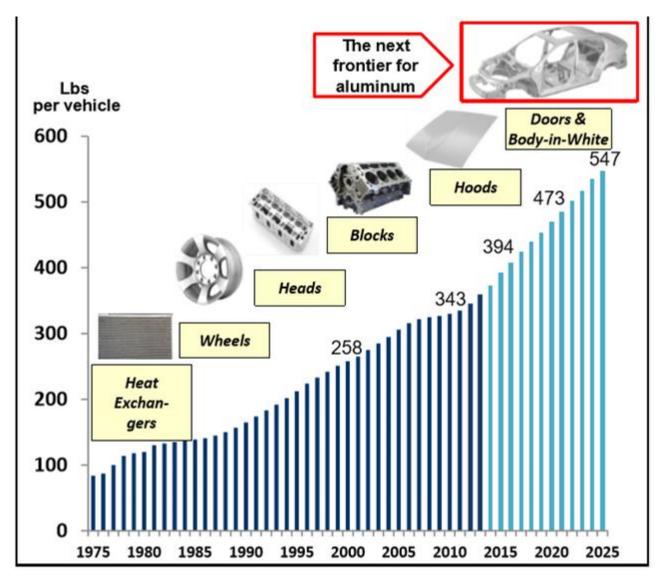
http://marketrealist.com/2015/12/auto-industrys-aluminum-usage-increasing/ http://www.aluminum.org/product-markets/automotive

Aluminium in Automotive Industry

From mass-market vehicles like the Ford F-150 to luxury cars like Audi, Mercedes Benz and Land Rover, aluminum is increasingly the "material of choice" for automakers thanks to its strength and environmental advantages.

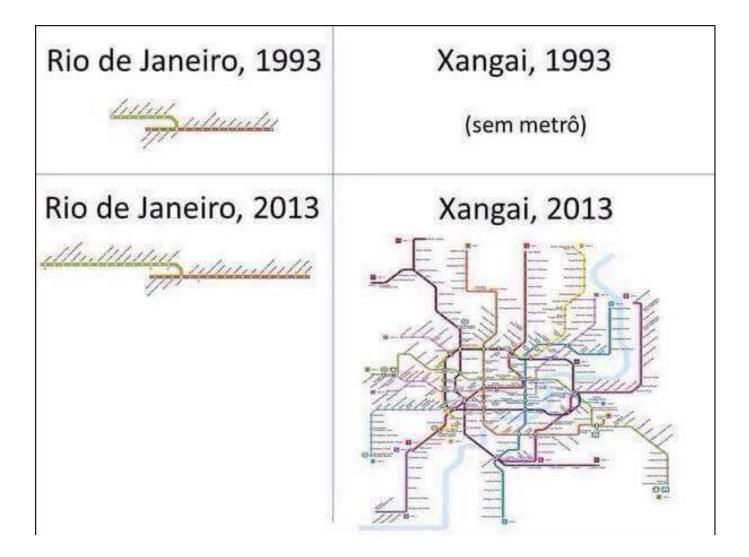
Ford's F-150 pickup truck. Aluminum accounts for roughly 25% of the curb weight of the 2015 F-150.

Material application strategy


Overview of current BIW material composition strategies

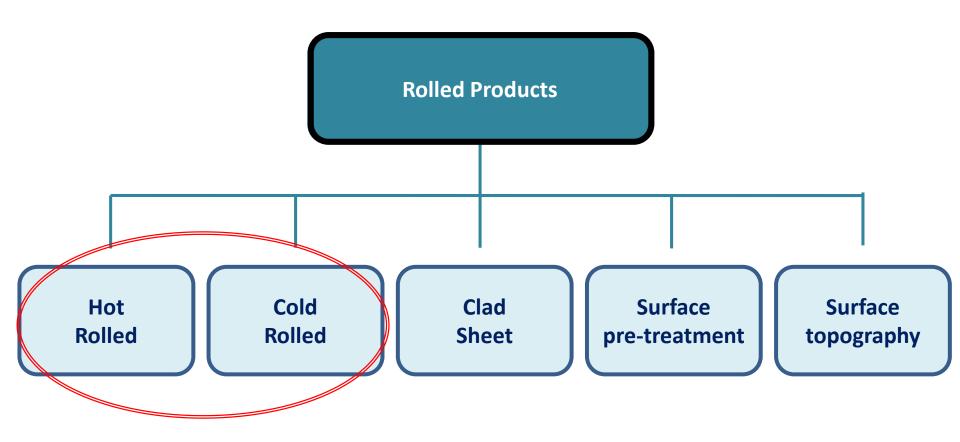
BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	22% / 72.8	\$147	Hyundai Genesis	Economy
Anoo-intensive	2270772.0	.p1++7	Nissan Murano	Sedans
AHSS, aluminium, composites	24.5% / 80.3	\$176	BMW 7 Series	Luxury
Ariss, aluminium, composites	24.3707 80.3	\$170	Lexus LC500	
			Jaguar XF	Luxury
Aluminum-intensive	35% / 114.8	\$720	Range Rover	Premium
			Audi A8	
Carbon fibre	50% / 164	\$2,512	BMW i3	Super Premium
Carbon hore	50%7104	94,512	Lamborghini Aventador	Sports Cars

Source: ENDAG, 2012


Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

Accelerating Aluminum use in Automotive

http://marketrealist.com/2015/12/auto-industrys-aluminum-usage-increasing/


Growth

ROLLED PRODUCTS

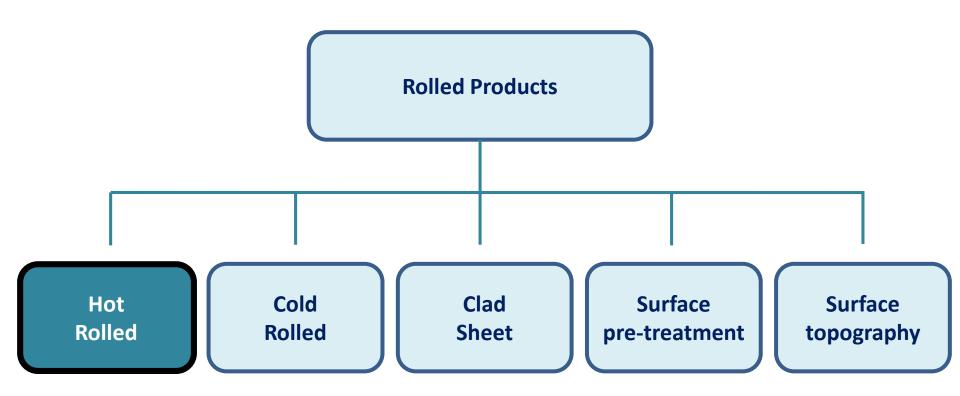
Rolled Products

Automotive applications

- Rolled products:
 - Plate;
 - Sheet;
 - Foil;
 - \circ Welded tubes.
- Weight reduction.
- Enhancement of part performance.

The second largest fraction of aluminium in automobile applications.

DC rear axle cradle


BMW fabricated wheel

Special alloys and tempers have been developed and are in use that provides the properties needed to meet the specific quality requirements of the various parts.

Sheet products are provided with special surface topographies, claddings as well as with pretreatments for lubrication, joining and painting by coil coating processes.

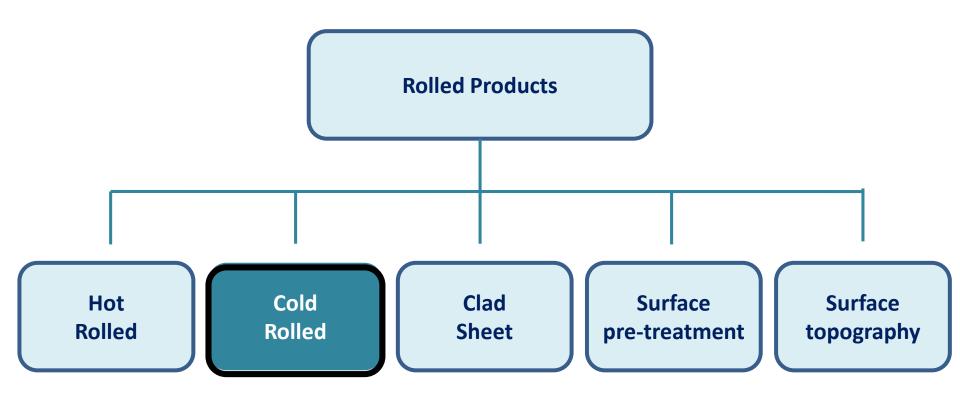
THE Aluminium Automotive MANUAL

Rolled Products

Hot Rolled

- ✓ Sheet can be processed directly to final gauge by hot rolling.
- This process is very economical, but available alloys and tempers are limited.
- ✓ Dimensional tolerances: typically ± 0.30 to ± 0.40 mm.

Longtudinal coil shearing



Hot rolled coil

Hot rolled plate

Rolled Products

Cold Rolled

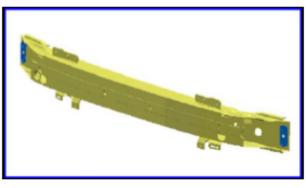
- Cold rolled products are sheet or plate, where the final gauge is processed by cold rolling.
- Often additional annealing treatments are necessary to adjust the properties specified by customers.
- Main characteristics
 - Narrow tolerances on shape and dimensions.
 - Thickness tolerances depend on the type of alloy, sheet or strip thickness range and rolling width, and are listed in standards EN 485-4.

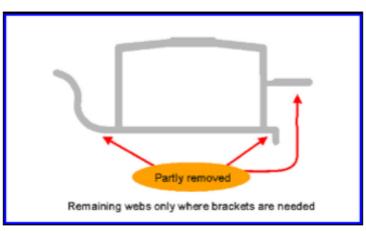
CAST & EXTRUDED ALUMINIUM

Cast Aluminium

- Casting is a simple, inexpensive and versatile way of forming aluminum into a wide array of products.
- ✓ The automotive industry is the largest market for aluminum casting.
- Cast products make up more than half of the aluminum used in cars.
- ✓ Over 95% of the aluminum die-casting produced in the U.S is made from postconsumer recycled aluminum
- Automobile makers are now focusing on collaborating with the part die casting manufacturers in order to produce fuelefficient and lightweight automobiles.

http://www.aluminum.org/industries/processing/castings http://www.prnewswire.com/news-releases/us-automotive-partsaluminum-die-casting-market-2015-2020-300158819.html


Car engine is produced through the aluminum casting process.


Cast aluminum transmission housings and pistons have been commonly used in cars and trucks since the early 1900s.

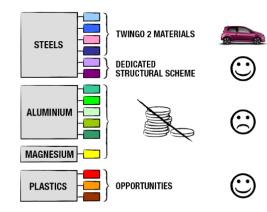
Extruded Aluminium

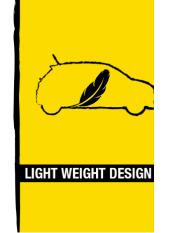
External webs can be used as brackets. Areas where the webs are not necessary can be removed. See bumper beam below.

A bumper beam, a formed hollow extrusion where webs are cut away in areas not necessary

Profile cut of the bumper beam

BIW APPLICATION


Overview of current BIW material composition strategies


BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	220/ 172.0	\$147	Hyundai Genesis	Economy
	22% / 72.8		Nissan Murano	Sedans
AHSS, aluminium, composites	2458 (00.2	\$176	BMW 7 Series	Luxury
	24.5% / 80.3		Lexus LC500	
Aluminum-intensive		\$720	Jaguar XF	Luxury
	35% / 114.8		Range Rover	Premium
			Audi A8	
Carbon fibre	50% / 454	\$2,512	BMW i3	Super Premium
	50% / 164		Lamborghini Aventador	Sports Cars

Source: ENDAG, 2012

Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

BIW - WEIGHT SAVING STRATEGY


2. Material mix in the body-in-white including doors and closures

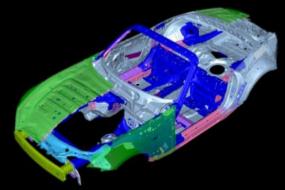
Based on metallurgical/chemical material classes

Mate	rials: corresponding metallurgical classes	RGB colour code	%
	Low Strength Steels: Mild steels	R 153, G 204, B 255	38
	High Strength Steels (HSS): High Strength Interstitial-free Steels (HSIF), Bake Hardening Steels (BH), High Strength Low Alloy Steels (HSLA)	R 051, G 102, B 255	43
Steels	Advanced High Strength Steels (AHSS): Dual Phase Steels (DP), Transformation Induced Plasticity Steels (TRIP)	R 255, G 153, B 204	2
	Stainless steels: Austenitic stainless steels	R 051, G 051, B 153	
	Ultra High Strength Steels (UHSS): Complex Phase Steels (CP), Martensitic Steels (MS)	R 204, G 153, B 255	11
	Press Hardened Steels (PHS)	R 128, G 000, B 128	3
	Aluminium sheets: 7xxx series	R 051, G 204, B 153	
Ē	Aluminium sheets: 6xxx series	R 000, G 255, B 000	
Aluminium	Aluminium sheets: 5xxx series	R 204, G 255, B 204	
Alu	Aluminium extrusion profiles	R 153, G 204, B 000	
	Cast aluminium	R 051, G 153, B 102	
Magnesium		R 255, G 255, B 000	
2	Fibre reinforced plastics	R 255, G 000, B 000	
Plastics	Duroplastics, including Sheet Molding Compound (SMC)	R 255, G 153, B 000	1
P	Thermoplastics	R 153, G 051, B 000	2
Othe name	r materials, ely:	R 192, G 192, B 192	

LIGHTWEIGHT – MATERIAL GRADES BODY

BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	228 172.0	\$147	Hyundai Genesis	Economy
AH35-Intensive	22% / 72.8	\$147	Nissan Murano	Sedans
ALICE alizabelian companies	24.5%/80.3	\$176	BMW 7 Series	Luxury
AHSS, aluminium, composites	24.5%780.3	\$176	Lexus LC500	
			Jaguar XF	Luxury
Aluminum-intensive	35% / 114.8	\$720	Range Rover	Premium
			Audi A8	
Carbon Obre	500 1151	e2 / 12	BMW i3	Super Premium
Carbon fibre	50% / 164	\$2,512	Lamborghini Aventador	Sports Cars

Source: ENDAG, 2012


Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

Overview of current BIW material composition strategies

Structural Evolution

Realization of Feeling of Lightness

Realized Weight Reduction of -38.6 kg (WIB).

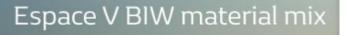
H <u>ot fo</u>	<u>rmed(2.8%</u>)
Ultra High strength steel	Aluminum (9.4%) Low strength steel
Advanced 9.5%	
High strength steel	32.2% High strength steel

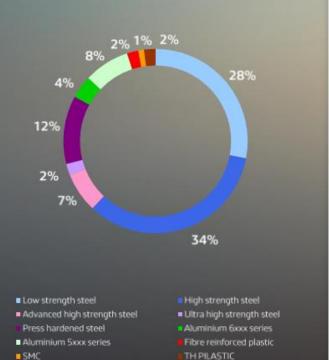
BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	22% / 72.8	\$147	Hyundai Genesis	Economy
			Nissan Murano	Sedans
AHSS, aluminium, composites	24.5% / 80.3	\$176	BMW 7 Series	Luxury
			Lexus LC500	
Aluminum-intensive		\$720	Jaguar XF	Luxury
	35% / 114.8		Range Rover	Premium
			Audi A8	
Carbon fibre	50% / 164	\$2,512	BMW i3	Super Premium
			Lamborghini Aventador	Sports Cars

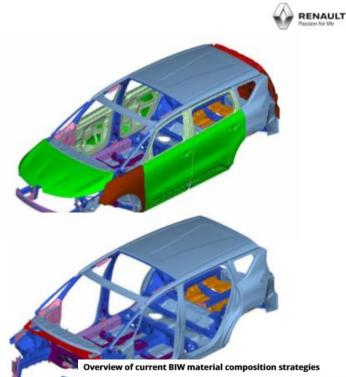
Source: ENDAG, 2012

Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

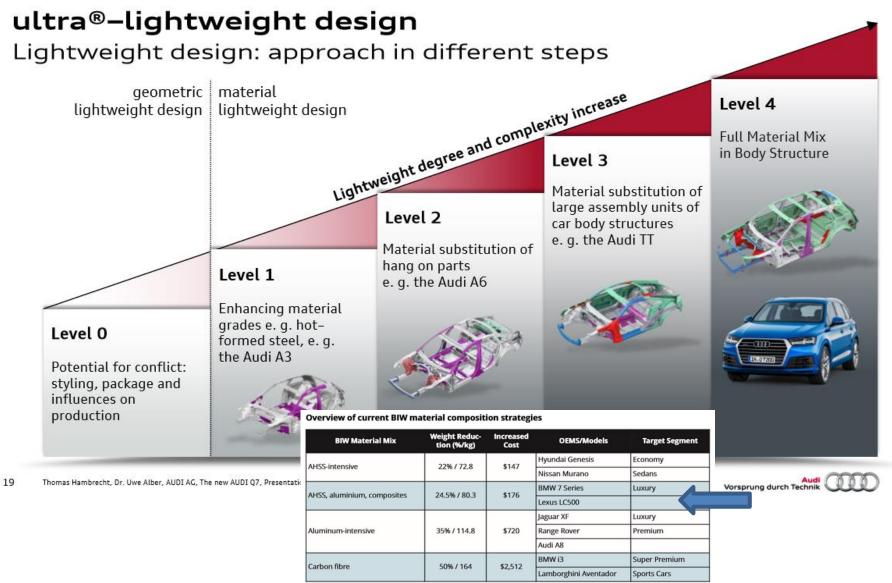
Feeling Car Responds Directly to your Intention


Kan Sensation



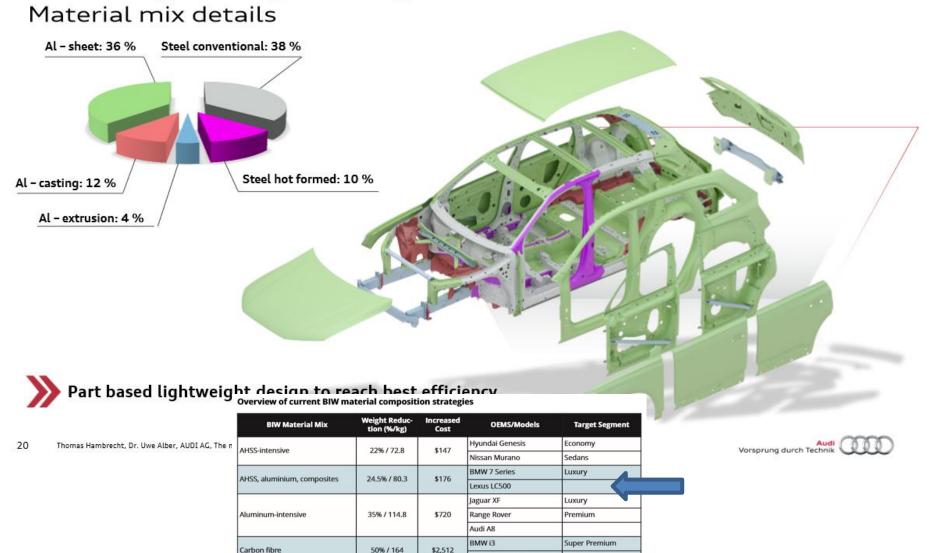


Feeling of Openness



BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	22%/72.8	\$147	Hyundai Genesis	Economy
AH55-Intensive	22%772.8	\$147	Nissan Murano	Sedans
ALLER A. L. L. L.	2458 (00.2	4476	BMW 7 Series	Luxury
AHSS, aluminium, composites	24.5% / 80.3	\$176	Lexus LC500	
			Jaguar XF	Luxury
Aluminum-intensive	35% / 114.8	\$720	Range Rover	Premium
			Audi A8	
Card an Ohm	500 1454	40.540	BMW i3	Super Premium
Carbon fibre	50% / 164	\$2,512	Lamborghini Aventador	Sports Cars

Source: ENDAG, 2012


Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

Source: ENDAG, 2012

Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

ultra®-lightweight design

Source: ENDAG, 2012

Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

Lamborghini Aventador

Sports Cars

Overview of current BIW material composition strategies

BIW Material Mix	Weight Reduc- tion (%/kg)	Increased Cost	OEMS/Models	Target Segment
AHSS-intensive	22%/72.8	44.67	Hyundai Genesis	Economy
Ariss-Intensive	22%112.8	\$147	Nissan Murano	Sedans
	24.5% (00.2	\$176	BMW 7 Series	Luxury
AHSS, aluminium, composites	24.5% / 80.3		Lexus LC500	
Aluminum-intensive			Jaguar XF	Luxury
	35% / 114.8	\$720	Range Rover	Premium
			Audi A8	
Carbon fibre 50% / 164		BMW i3	Super Premium	
	50% / 164	\$2,512	Lamborghini Aventador	Sports Cars

Source: ENDAG, 2012

Note: Weight reduction and cost figures are as per the 2012 research study by ENDAG that determined maximum feasible weight reduction in passenger vehicles using 2011 Honda Accord as its baseline vehicle.

Transportation Sheet Products

CAB Body Sheet

- Ac-200 and AC-300 development status
 - Final development loops at Novelis
 - Technical data not yet available
- Key features
 - Very good formability
 - Skin quality
 - Uni-alloy concept
 - Bake hardening
 - Good crash resistance (similar to AA5754)
- Typical applications
 - Door inner
 - Side wall
 - Crash relevant parts

Crash samples: Ac-300 T61 2.5mm gauge, Rp ~ 220MPa

CONCLUSION

15

Aluminium in Automotive Industry

- Aluminum growth depends on:
 - Regional availability implemented supply chain;
 - ✓ Size of vehicle OEMs strategy;
 - ✓ Economic business cases.
- Normal steps of evolution: casting extruded Rolled.
- More clear application in passengers cars but also good examples for trucks & trailers.
- Best in class platform: Always multi material strategy best engineering approach.

THANK YOU

