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Abstract 

 
A preliminary study on the evolution of creep deformation substructure in Ni-base superalloy 
Allvac 718Plus has been performed. Specimens crept at 620 MPa and at temperatures ranging 
from 690-732ºC were examined utilizing diffraction contrast TEM characterization techniques. 
Creep was interrupted at 1-2.5% strain in order to study the deformation substructure following a 
limited amount of deformation. The dominant deformation modes at each of the test 
temperatures were highly planar in nature and involved shearing of the � matrix and �′ 
precipitates on {111} glide planes. In addition, paired a/2<110> dislocations were evident which 
suggest an antiphase boundary shearing mechanism. Creep induced microtwinning was also 
observed at the highest creep temperature which was created by identical a/6<112> Shockley 
partial dislocations that shear the  matrix and �′ precipitates on consecutive close packed 
{111} glide planes.  
 Introduction 
 
Ni-based superalloys are predominately utilized in aircraft and land-based industrial gas turbine 
engines where they excel in the retention of mechanical properties during service at elevated 
temperatures. In order to improve both engine performance and efficiency significant emphasis 
has been placed on developing alloys that can operate at higher temperatures without significant 
loss in structural integrity. In the conventional 718 alloy, the upper bound service temperature is 
limited to ∼650º, which is governed primarily by microstructural instability through coarsening 
of the prime strengthening DO22 structured Ni3Nb-based γ′′ precipitate phase followed by its 
transformation to the equilibrium orthorhombic Ni3Nb δ-phase [1-6]. With this in mind, Allvac 
718Plus was developed with the specific goal of increasing the temperature capability by ∼55ºC 
while maintaining the excellent workability and weldability characteristics of 718 [7-8]. The 
alloy chemistry was modified such that the Fe content was reduced while the W, Co and Al/Ti 
ratio was increased. This combination of changes enables the precipitation of ordered L12 
structured (Ni3Al,Ti) based γ′ precipitates that are coherently embedded in a solid solution 
γ matrix [9-10]. It is expected that the alteration of the prime-strengthening constituent from γ′′ 
to γ′ will have a significant effect on the thermal stability of this alloy as well as the high 
temperature mechanical properties. 
 
In Ni-based superalloys where γ′ is the prime-strengthening phase, a rich variety of deformation 
modes have been reported [11-18]. The precipitates themselves are unique in that during 
deformation, the γ′ precipitates impart resistance to plastic deformation since they act as effective 
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barriers to dislocation motion as high energy atomic configurations would develop if the 
precipitates were to be sheared by perfect or partial dislocations operating on <110>{111} or 
<112>{111} slip systems, respectively. Examples of these structural and chemical defects 
include antiphase boundaries (APB), complex stacking faults (CSF), superlattice intrinsic 
stacking faults (SISF), or superlattice extrinsic stacking faults (SESF). Since these alloys are 
expected to operate at high temperature and high stress regime where creep deformation is of 
concern it is important to characterize the thermally activated, creep rate controlling deformation 
mechanisms. Although baseline mechanical property testing has already been performed on 
Allvac 718Plus, there has yet to be a detailed study on the deformation mechanisms in this alloy 
system. In this study, we have investigated the creep deformation mechanisms of Allvac 718Plus 
at three different temperatures through analysis of the deformation substructure using diffraction 
contrast TEM characterization techniques. 
 

Materials and Experimental Procedure 
 
The Allvac 718Plus material used in this creep deformation study was provided in the solution 
heat-treated form. The microstructure consists of equiaxed grains with a fair amount of annealing 
twins as shown in light optical micrographs presented in Figure 1. When viewed at higher 
magnification, it can be seen that the grain boundaries are decorated with the thin needle shaped 
δ-Ni3Nb grain boundary phase. The high temperature creep properties were studied through 
constant load tensile creep tests in air at 620 MPa and at test temperatures of: 691, 704 and 
732ºC. Specimens were crept to a minimal amount if deformation (1-2.5%) then cooled under 
load which enabled the deformation substructure to be characterized. Following creep, a detailed 
TEM characterization study of the deformation mechanisms was performed using a LaB6 FEI 
Tecnai TEM operating at 200keV. Specimens for TEM characterization were extracted from the 
gauge section at a 45º angle with respect to the tensile axis in order to facilitate TEM 
characterization of defects on slip planes that experienced maximum shear stress. Specimens 
were mechanically thinned using progressively finer SiC paper to 1200 grit then slurry drilled to 
create 3mm disks. Final thinning to electron transparency was performed using a Struers Tenupol 
5 twin jet electropolisher using an electrolyte consisting of 60% Methanol, 35% 2-n-
butoxyethanol, and 5% perchloric acid at -40ºC and 15V.  
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Figure 1. Light optical micrographs of solution heat treated Allvac 718Plus a) lower magnification 
image revealing equiaxed grains with Σ3 annealing twin boundaries and b) higher magnification 
image revealing the presence of grain boundary δ-Ni3Nb phase.  
 
 

Results and Discussion 
 
The macroscopic creep deformation response of Allvac 718Plus is presented in creep strain vs 
time curves in Figure 2. The influence of temperature on creep can easily be deduced as 
specimens were crept at the same stress (620 MPa) but at different test temperatures (691, 704 
and 732ºC). As expected, with increasing temperature there is a noticeable difference in creep 
rate. At the lowest test temperature a small primary creep transient period does exist which is 
followed by a steady state creep regime. After about 125 hours there is an inflection in the creep 
curve where the creep rate begins to accelerate indicating a transition from secondary to tertiary 
creep. At the intermediate test temperature there is no such pronounced steady state creep regime 
and the creep behavior seams to transition directly from primary to tertiary creep. Creep at the 
highest test temperature appears to exhibit nearly entirely tertiary creep behavior and reaches 1% 
creep strain in a relatively short amount of time. 
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Figure 2. Interrupted creep curves showing plastic strain vs. time for Allvac 718Plus crept at 620 
MPa and at 691, 704, and 732ºC.  
 
In order to better understand the creep rate controlling processes and to correlate the creep 
response to the underlying creep deformation mechanisms, TEM characterization of the 
deformation substructure was conducted. When the deformation substructure was analyzed 
following creep at 691ºC, deformation appears to be initiated from grain boundary sources as 
shown in Figure 3a. In some cases the grain boundary δ phase appears to be the initiation sites 
for deformation activity. It is unclear however whether the grain boundaries themselves or the 
grain boundary delta phase act as stress concentrators in this material. Nevertheless, the 
dominant deformation structures are highly planar faulted structures that exist on multiple slip 
systems. Slip trace analysis has confirmed that slip is restricted to the close packed {111} glide 
planes. When the planar deformation structures are inclined with respect to the electron beam it 
can be seen that the γ′ precipitates have been sheared as marked by the continuous stacking faults 
that transcend through both the γ matrix and γ′ precipitate. Aside from these dominant stacking 
fault relating shearing modes, loosely-coupled, paired a/2<110> type matrix dislocations are also 
involved in the deformation processes, albeit to a lesser degree. This is indicative of the coupled 
a/2<110> APB shearing mode where the leading dislocation shears the γ′ precipitate, creating a 
high energy APB. The order of the γ′ precipitate is then restored as the trailing a/2<110> 
dislocations shears the γ′. 
 
During creep at 704ºC, deformation again is dominated by highly planar stacking fault shearing 
configurations where they are observed to extend across entire grains as shown in Figure 4a. 
These mechanisms are similar to the stacking fault related shearing processes as observed in the 
specimen crept at 691ºC. Further detailed dislocation and stacking fault analysis is still needed 
for the specimens crept at 691 and 704ºC in order to determine what type of dislocations are 
responsible for the stacking fault related shearing mode and whether or not the stacking faults 
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created in its wake are intrinsic or extrinsic in nature. With this information it would then be 
possible to adequately describe the deformation mechanism and determine what the creep rate 
limiting process. Aside from the planar stacking fault-shearing mode, the motion of a/2<110> 
dislocations that are locally dissociated into a/6<112> type Shockley partial dislocations and 
separated by the matrix intrinsic-stacking fault. (Refer to Figure 4b). The process by which these 
dislocations dissociate into Shockley partial dislocations have previously studied in 
polycrystalline Ni-based superalloys through in-situ and post mortem TEM characterization 
where it was determined that a narrow γ channel width (distance between γ′ precipitates) 
promotes the dislocation dissociation process [19].  
 

 
 
Figure 3. Bright field TEM micrographs of specimen crept at 620 MPa and 691ºC depicting a) planar 
type stacking fault shearing configurations initiating from grain boundary δ precipitates as the 
dominant deformation mechanisms and b) a/2<110> matrix dislocations (as marked by arrows).  
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Figure 4. a) Planar stacking fault related shearing mechanisms developed during creep at 620 MPa 
and 704ºC and b) loosely coupled a/2<110> dislocations which appear to be locally dissociated into 
a/6<112> Shockley partial dislocations separated by stacking faults (as marked by arrows). 
 

During creep at the highest test temperature examined in this study (732ºC) a high density of 
continuous planar faulted structures that shear through both the γ matrix as well as the γ′ 
precipitates were also observed. A representative image of these structures imaged in an edge on 
orientation is shown in Figure 5a along with a selected area electron diffraction pattern (SAED) 
acquired about the [011] zone axis (Figure 5b). In the SAED pattern, there are fundamental 
reflections associated with the  matrix and superlattice reflections associated with the γ′ 
precipitates. Additionally, there are extra twin reflections that are present, which provides direct 
evidence that these highly planar faulted structures are microtwins. The appearance of 
microtwins during creep in Ni-based superalloys have been reported in both polycrystalline disk 
and single crystal blade alloys [17-21]. One of the earliest experimental evidence of 
microtwinning in a γ′ strengthened Ni-base Superalloy was reported by Guimier and Strudel in 
Waspaloy deformed above 500ºC [20]. Electron diffraction experiments showed the presence of 
twin reflections and superlattice reflections and thus was reported that the ordered structure of 
the γ′ precipitates has been maintained after twinning. Kakehi proposed a mechanism that may 
lead to the formation of microtwins by superpartial dislocation shear and superlattice stacking 
fault formation. It was proposed that when the ©2 precipitates are sheared by a/3<112> 
superlattice Shockley partials on adjacent {111} planes, an SISF would form on the first layer, 
SESF on the second layer, and a twin on successive layers [21]. In the L12 structure of the γ′ 
precipitates, this would result in twin formation if the a/3<112> partial dislocations shear the 
precipitate on adjacent {111} glide planes. Although this mechanism seems quite feasible since 
it accounts for the ordered L12 structure to be preserved, shearing the crystal by such a large 
displacement would require high stresses. Since then, little attention has been given until recently 
since it seems that this mechanism is highly dependent upon alloy chemistry, γ′ precipitate size 
scale/morphology, γ channel spacing, orientation, stress, and temperature.  
 
On the other hand Kolbe has proposed a hypothesis that microtwins can form by the pairwise 
passage of identical a/6<112> Shockley partial dislocations that shear through both γ and γ′ on 
adjacent {111} glide planes [22]. Taking into consideration that shearing of the γ′ precipitate by 
a single a/6<112> Shockley partial dislocation would result in a high energy CSF. Kolbe 
proposed that diffusion mediated atomic reordering in the wake of the leading partials is required 
to convert the pseudotwin structure created in the γ′ into a true twin structure with reshuffling of 
atoms to establish the correct nearest Ni-Al neighbor bonds as that in the L12 ordered γ′ 
structure. Although direct TEM evidence was not given at the time, it has been later 
substantiated through direct TEM evidence that microtwins do actually form when both the γ 
matrix and γ′ precipitates are sheared conservatively by identical, paired a/6<112> Shockley 
partial dislocations traveling on adjacent type octahedral glide planes [17]. In a recent review on 
microtwinning in Ni-based superalloys by Kovarik et al [23], it was reported that thermally-
activated, diffusion-based atomic reordering is the rate limiting process in the progression of 
creep induced microtwinning and that it is energetically feasible to occur by vacancy mediated 
exchange mechanism between Al and Ni which is facilitated by the higher diffusion rates during 
creep at elevated temperature. 
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Figure 5. a) Bright field TEM image of highly planar microtwins (as marked by arrows) imaged edge 
on formed during creep at 620 MPa and 732ºC. The presence of twin reflections in the selected area 
electron diffraction pattern in b) provides confirmation that the highly planar shearing configurations 
are microtwins. 
 

Conclusions 
 
The high temperature creep deformation mechanisms of Allvac 718Plus was evaluated through 
TEM characterization of specimens crept at the same stress (620 MPa) but at different 
temperatures (691-732ºC) in order to determine the effect of temperature on creep deformation 
behavior and underlying creep deformation mechanisms. For all test conditions, very highly 
planar deformation structures were prevalent as a major source of deformation; however there 
were clear distinctions between the thermally activated shearing configurations. At the lower test 
temperatures deformation involves shearing of the γ matrix and γ′ precipitates by partial 
dislocations through a stacking fault related shearing mode. At the highest test temperature, 
microtwinning was observed and is created by the passage of paired Shockley partial 
dislocations. Following precipitate shear by partial dislocations, the thermally activated rate 
controlling process in each of these deformation modes is suggested to be related to atomic 
reordering within the γ′ precipitates. Considering the aforementioned deformation mechanisms, 
these results should provide further insight into the thermally activated deformation processes 
that occurs during creep of γ′ strengthened Allvac 718Plus.  
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