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Abstract  

The excellent mechanical properties of Inconel 718 are due to the γ′ and specifically the γ′′ 
precipitates. Solution heat treatment was performed at 1095 ºC for 1 h followed by air cooling. A 

δ-phase precipitation heat treatment was made at 955 ºC, 1 h/AC. Finally a double-aging at 720 

ºC, 8 h/FC at 57 ºC/h down to 620 ºC, 8 h/AC to precipitate both γ′ and γ′′ phases. The 

precipitation of both γ′ and γ′′ phases were studied in details after aging treatment by the use of 

transmission electron microscopy. The spherical precipitates were identified as γ′ phase and the 

ellipsoidal precipitates were γ′′ phase. At 720 ºC for 8 h both γ′ and γ′′ are growing; the mean 

long-axis of γ′′ particle is 40 nm and the mean short-axis is 14 nm whereas the average diameter 

of the spherical γ′ particle is 17 nm. However, at 620 ºC, γ′′ stops growing but γ′ continue to 

grow and the diameter increases to 21 nm. 
 

Introduction  

The importance of the alloy Inconel 718 has been steadily growing since it was introduced more 

than fifty years ago due to its exceptional strength and versatility and it is today the predominant 

Nickel-Iron based superalloy [1, 2], and represents about half the total tonnage of superalloys 

used throughout the world. It is made in virtually all product forms, such as forged disks, shafts 

supports, fasteners, sheet components and frame sections [3]. Inconel 718 is mainly strengthened 

by the metastable semi-coherent body centered tetragonal precipitates γ′′ phase Nb3(Al,Ti) and 

the coherent face centered cubic γ′ phase Ni3(Al,Ti). 

 

Both solid solution and precipitation strengthening are the major steps in strengthening 

mechanisms [1–4], and the heat treatment scheme of Inconel 718 is divided into solid solution 

treatment and aging treatment. The standard solution treatment temperature for wrought Inconel 

718 is 980 ºC followed by a double-aging 720 ºC, 8 h/FC 57 ºC/h to 620 ºC, 8 h/AC [3, 4]. For 

wrought Inconel 718, the solution temperature was increased to 1032 ºC to improve the high 

temperature crack propagation resistance [5]. For cast Inconel 718, the standard homogenization 

heat treatment of 1095 ºC/1 h dissolves most of the δ-phase and a portion of the Laves [6]. Since 

niobium is the major element for the precipitation strengthening through γ′ and γ′′, a higher 

solution temperature will increase the niobium content and thus increase the precipitation 

strengthening. The same heat treatment schedule of cast material applied on wrought material 
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will ensure that optimized solution and precipitation hardening will take place although with an 

associated grain growth which in industrial practice usually is unacceptable. 

 

Both the orthorhombic δ-phase and carbides are generally viewed upon as deleterious, but it is 

well known [7, 8] that the δ-phase is used to control the grain size in wrought processes by 

pinning grain boundaries. In Inconel 718, δ-phase formation occurs in the 650–980 ºC 

temperature range with platelet morphology [2]. 

 

Experimental Procedure 
 

Round bar Inconel 718 superalloy with diameter 12.8 mm was used as test material produced 

from double melt (VIM/VAR) ingots. The chemical composition is shown in Table I. 

 

Table I. Chemical composition of Inconel 718 in wt% 

C Mn Fe S Si Cu Ni Cr 

0.04 0.09 18.64 0.0001 0.07 0.17 Bal. 18.11 

        

Al Ti Co Mo Nb Ta P B 

0.53 0.95 0.21 3.03 5.05 0.01 0.009 0.003 

 

Inconel 718 is usually used in the solution and aged condition, the exact conditions of the 

temperatures, time, and cooling rates depend on the application and mechanical property needs. 

Many aerospace applications require high tensile and fatigue strength, as well as good stress-

rupture properties, so that a solution treatment below the delta-solvus and a two-step aging 

treatments are used [1–4]. 

 

In the present  study, standard heat treatments for precipitation-strengthened cast Inconel 718 [4], 

were employed the solution heat treatment at 1095 ºC for 1 h/AC, and then aging at 955 ºC, 1 

h/AC to precipitate δ-phase, then followed by a double-aging at 720 ºC, 8 h/FC 57 ºC/h to 620 

ºC, 8 h/AC. The heat treatment steps are schematically shown in Figure 1. 
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Figure 1. Heat treatment scheme of Inconel 718. 

 

Microstructure characterization was performed with scanning electron microcopy (SEM) and 

transmission electron microcopy (TEM). The average size of strengthening precipitates of γ′ and 

γ′′ was quantitatively determined by TEM bright-field and dark-field images. Metallographic 

sections were prepared using standard mechanical polishing procedures and electrolytically 

etched in HCl:HNO3:HF:H2O solution with volume ratio of 50:10:2:38. A Hitachi-4700 FE-SEM 

with a Horiba EDS system was used to examine the microstructure. Twin jet electrolytic etching 

was employed in 90% C2H5OH + 10% HClOH solution at –20 
o
C and 22V voltage to prepare 

TEM specimens, which were observed by FEI Tecnai G
2
 20 S-twin TEM. 

 

Results and Discussion 
 

SEM image of as-received Inconel 718 with an average grain size 25 µm shows that globular δ-

phase and carbides are uniformly distributed in the matrix, as shown in Figure 2. Some of the 

carbides are relatively large and located at the grain boundaries, and of NbC/TiC type verified by 

both SEM EDS analysis and TEM (illustrated in Figure 3) analysis. After the solution treatment 

at 1095 ºC the grains grow since the pinning effect of the grain boundaries δ-phase disappears 

when this phase is dissolved. A one hour heat treatment renders an average grain size of 142 µm 

as shown in Figure 4. Comparison between the as received material (Figure 2) and the 

solutionized material (Figure 4) clearly shows that all δ-phase has been dissolved while the 

carbides remain undissolved. 

 

 
Figure 2. SEM image showing globular δ-phase and carbides (the 

large blocky particles) of the as-received Inconel 718. 
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Figure 3. TEM bright field images showing (a) NbC type and (b) 

TiC type carbides of the as-received Inconel 718. 

 

 
Figure 4. SEM image of Inconel 718 after solid solution 

treatment with carbides clearly visible and some pinning effects 

of grain boundaries. 

 

The first aging treatment at 955 ºC did, as expected, not change the grain size, but also, as 

expected, platelet δ-phase precipitated at the grain boundaries The amount of δ-phase after one 

hour is limited [9] as shown in Figure 5.  SEM EDS analysis confirms that Ni3Nb is the chemical 

composition of the delta phase, which is also verified by TEM diffraction pattern analysis as 

shown in Figure 6. 
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Figure 5. SEM images showing platelet delta phase precipitated at 

grain boundary of Inconel 718 after solid solution and aging 

treatments at 955 ºC for 1 h (a) 500X, (b) 5,000X. 
 

 
Figure 6. TEM (a) bright field and (b) dark field images confirm 

that the platelets at the grain boundary are the orthorhombic delta 

phase. 

 

The double-aging treatment, 720 ºC, 8 h/FC 57 ºC/h to 620 ºC, 8 h/AC does not affect the grain 

size (170 µm) or the amount of δ-phase as seen by comparing Figure 5 with Figure 7 to the aging 

controls the size distribution of γ′ and γ′′ precipitates.  The spherical precipitates observed inside 

the grains are identified as γ′ phase and the dish shaped precipitates as γ′′ phase shown in Figure 

8a, the bright field TEM image.  As shown in Figure 8b, the TEM dark field image reveals very 

little information either about the γ′ or the γ′′ precipitates.  Figure 9 shows the selected-area 

diffraction (SAD) patterns obtained from [100] matrix zones axis. From the SAD analysis, the 

reciprocal lattice points must be treated as streaks parallel to the z direction. The diffraction 

pattern of [211] γ′ and [201] γ′′ zones axis can be determined by the use of diffraction pattern 
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data and JCPD card.  By the TEM EDS spectra analyses of γ′ and γ′′ phases shown in Figure 10, 

one can identify that γ′ has a FCC structure based on Ni3Al, with Ti and some Nb substituting on 

Al sites, γ′′ has a BCT structure based on Ni3Nb with minor Al and Ti substituting on the Nb 

sites. 

 

 
Figure 7. SEM image of Inconel 718 after full heat treatment – the 

blocky precipitates are MC-carbides. 

 

 
Figure 8. TEM images of γ′ and γ′′ phases of Inconel 718, (a) 

bright field, (b) dark field. 
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Figure 9. The SAD patterns taken from (a) [211] γ′ zone axes and 

(b) [201] γ′′ zone axes. 

 

 
Figure 10. TEM EDS spectra analyses of (a) γ′ phase and (b) γ′′ 
phase. 

 

After aging at 720 ºC for 8 h both γ′ and γ′′ are growing; the mean long-axis of γ′′ particle is 40 

nm and the mean short-axis is 14 nm; whereas, the average diameter of the spherical γ′ particle is 

17 nm. However, at the aging step at 620 ºC, γ′′ stops to grow but γ′ continue to grow and the 

diameter increases to 21nm.  Comparison of the average size between γ′ and γ′′ after aging at 720 

ºC for 8 h and after full aging treatment is shown in Figure 11. 

 

If the double-aging treatment of the standard heat treatment scheme is altered to 620 ºC for 16 h 

without 720 ºC step, neither γ′ nor γ′′ precipitates as indicated in Figure 12. However, with 

longer aging time, 100h, at 620 ºC, γ′ will precipitate as shown in Figure 13. 
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Figure11. Comparison of the average size between γ′ and γ′′ after 

the first step aging at 720 ºC/8 hrs and after full double-aging 720 

ºC/8 hrs + 620 ºC/8 hrs. 

 

 
Figure 12. TEM (a) bright-field, (b) dark-field images of Inconel 

718 after 620 ºC for 16 h without the initial aging at 720 ºC step, no 

γ′ and γ′′ are found. 
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Figure 13. TEM (a) bright-field, (b) dark-field images of Inconel 

718 after 620 ºC for 100 h without 720 ºC step, only γ′ is found. 

 

Conclusions 
 

The Inconel 718 alloy is mainly strengthened by γ′ and γ′′ phases precipitation. The important 

results of this study can be concluded as follows: 

 

1. After aging treatment, the spherical precipitates observed inside the grains were identified 

as γ′ phase and the disc shaped precipitates as γ′′. 

2. At aging 720 ºC for 8 h both γ′ and γ′′ were precipitated; the mean long-axis of γ′′ is 40 nm 

and the mean short-axis is 14 nm; whereas, the average diameter of the spherical γ′ particle 

is 17 nm. 

3. At the second subsequent 620 ºC ageing step γ′′ does not grow but γ′ continue to grow and 

the diameter increases to 21 nm. 

4. In the γ′ Ni3Al FCC structure Ti and some Nb substitute for Al. 

5. In the γ′′ Ni3Nb BCT structure Al and Ti substitute for Nb to a minor extent. 
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