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Abstract 

 

Research conducted by the Specialty Metals Processing Consortium has focused on developing 

tools to improve the quality of specialty alloy ingots produced by vacuum arc remelting (VAR) 

and electroslag remelting (ESR). Especially during the last ten years, the program has focused on 

developing model-based process monitors and controllers.  These tools employ predictive, 

dynamic, low-order electrode melting and ingot solidification models to estimate important 

process variables. Process monitors log these estimated variables (some of which are not subject 

to measurement) to computer files and use them to evaluate the health of the processes. Monitors 

are capable of detecting and flagging various process upsets and sensor failures.  Process 

controllers use the model-based variable estimates for feedback. Improved melt rate controllers 

have been developed using this method. Additionally, VAR pool power and pool depth 

controllers have also been demonstrated. Laboratory and industrial trials have shown the 

robustness and accuracy of these tools. 

Introduction 

The Specialty Metals Processing Consortium (SMPC) was formed in 1989 as a vehicle for 

performing pre-competitive research in the field of specialty metals processing. The consortium 

consists of specialty alloy producers as well as end users [1], and co-sponsors research with 

universities and government laboratories. Process specific research has been carried out for 

vacuum arc remelting (VAR), electroslag remelting (ESR), and electron beam cold hearth 

melting (EBCHM). In recent years the scope of activities has been narrowed to VAR and ESR. 

Current research is centered on developing advanced, model-based, discrete-time process 

monitors and controllers for these two processes in an effort to move toward producing ingots 

that are free of solidification defects. 

The approach taken by the SMPC is to first build process monitors and then, after the monitors 

have been proven accurate and reliable through industrial testing and application, convert them 

to process controllers. The monitors developed by the SMPC are discrete time monitors that use 

discrete-time Kalman filter technology [2]. A Kalman filter is a linear process observer that 

contains a dynamic process model relating process inputs to outputs. The output of the filter is a 

prediction of the state of the process at the end of the next time step. The state of the process is 

defined by a set of values associated with a set of pre-defined process variables. Once the initial 

state is defined, it can be propagated forward in time using the Kalman filter. Measurements, if 

available, are used in the filter to correct the model-based predictions. In this way, the monitor 

may be used to continually track the process and evaluate its overall health. 
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One advantage of using this type of process monitor is that it allows the process engineer to 

make a step-by-step comparison of what should be happening in the process (model-based 

estimates) with what is actually happening (measurements). The process model represents our 

best scientific understanding of how the process works under normal conditions. If 

measurements do not agree with predicted values after taking into account process and 

measurement uncertainties and model accuracy, then the process is experiencing an upset. Upsets 

are detected and logged by the monitor to facilitate correlating process conditions with ingot 

defects and anomalies that appear in post-process inspection and application. 

A second advantage of Kalman filter based process monitoring is that the filter can provide 

estimates of process variables that either cannot be measured or cannot be practically measured. 

Examples are the temperature distribution in the electrode, electrode/ingot area ratio or fill ratio, 

electrode gap (VAR), and immersion depth (ESR). Clearly these are important process variables 

that are unavailable as measured process outputs, but they can be easily estimated using a 

process observer. For example, when remelting a cast electrode produced using vacuum 

induction melting, the electrode will have a shrinkage cavity (“pipe”) down its center. The 

diameter and length of the cavity can vary significantly from electrode to electrode. A heavily 

piped electrode will yield a smaller than nominal fill ratio which can be estimated using the 

Kalman filter based monitor. This type of process monitoring facilitates finding and logging 

anomalous process conditions that normally go undetected and which directly impact ingot 

quality. 

Once a process monitor has been proven, it may be converted into a process controller using the 

Kalman filter output as feedback. This can be done in a variety of ways as described in the 

references cited below. The advantage is direct control of variables that cannot be measured or 

practically measured. For example, melt shops have traditionally been interested in controlling 

the melting rate of the electrode in both VAR and ESR because of its direct impact on ingot 

quality. However, there is no direct, usable measurement of melt rate. Given current state-of-the-

art load cell technology and data filtering techniques, step-by-step melt rate measurements are so 

noisy that they are useless except for averaging over relatively long periods of time. Thus, there 

is no way to know what the instantaneous melt rate is using weight data alone; one can only 

know what the average melt rate has been over, say, the last five minutes (or longer). But 

Kalman filter technology can be used to estimate instantaneous melt rate and accurate, highly 

dynamic VAR [3] and ESR [4] melt rate controllers have been designed and tested using this 

technology. This allows for very precisely controlled startup and hot-top procedures based on 

melt rate which facilitates producing more useable ingot and minimizing the rate of solidification 

defect formation in these highly transient parts of the remelting process. 

In the body of this paper, I will give an overview of the process monitors and controllers 

developed by the SMPC over the past few years and their impact on ingot quality. Though the 

examples given will be for VAR, the same principles apply to ESR. The development of both 

VAR and ESR monitors and controllers has occurred in parallel SMPC programs. Some details 

will necessarily be missing because of the proprietary nature of the technology. 
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SMPC Process Monitors 

Effective process monitoring requires that a single point be located in a multivariable space that 

characterizes the current state of the process and a determination as to whether that point lies 

within a region where theory and experience predict successful operation. To facilitate tracking 

the position of the process in its variable space, a process monitor should be capable of 

distinguishing between process upsets and sensor noise, as well as detect and report sensor 

failures. Ideally the monitor would have the additional capability of responding to a failed sensor 

in a manner that allows it to continue to effectively track the process. 

As mentioned above, SMPC process monitors are based on a Kalman filter technology. A 

Kalman filter produces consistent, unbiased, minimum variance estimates of all state variables 

associated with the process. The filter used for the VAR process uses a low-order model of 

electrode melting to provide estimates of the electrode thermal boundary layer (), electrode gap 

(G), electrode position (X), electrode weight (M), process efficiency (), fill ratio parameter (a), 

voltage bias (Vb), current bias (Ib), and electrode velocity bias (Ub).  is defined as the distance 

from the electrode tip to that point on the electrode axis where the temperature has reached 

ambient, and the fill ratio parameter is defined as one minus the ratio of the electrode cross-

sectional area to that of the crucible (a=1-Ae/Ac). The voltage bias is the difference between the 

estimated process voltage and its measured value; it has proved effective at detecting glows and 

air and water leaks. Current and ram velocity bias states are necessary from a practical point of 

view: they account for the fact that the actual current and ram velocity do not quite match the 

commanded setpoint values in many VAR shops. All bias states are treated as disturbance 

variables in this formulation. A full treatment of the mathematical development underlying the 

estimator (Kalman filter) has been reported elsewhere [5] along with a fuller description of the 

SMPC VAR monitor [6]. 

Figure 1 shows the SMPC VAR monitor display window [7].  Furnace outputs are displayed in 

the upper strip-chart control field and Kalman filter (estimator) outputs are displayed in the lower 

field. The data shown are from an Alloy 718 VAR test melt during steady-state operation. The 

instantaneous values of the process variables listed along the left side of the window do not 

represent standard steady-state operating conditions for any SMPC member company.  

Besides using estimator outputs to hunt for process upsets and anomalies, the monitor also 

employs a suite of input data tests that are useful for this purpose. For example, the information 

listed on the right side of the monitor window indicates that the software has detected two arc 

shorts (low voltage situations) and two arc-outs (loss of current) in the test data. These two data 

tests are listed under Standard Tests along with four others: scrams (or electrode pull-out), 

pressure spikes, glows and helium drop-out (low He pressure) tests. At the conclusion of 

melting, a report is generated listing the type and location of each event. Other input data tests 

include Setpoint Deviation Tests, Means Deviations Tests, and Estimator Means Deviation Tests. 

The Setpoint Deviation Tests check to see if the differences between the values for a furnace 

setpoint variable and its associated measured values exceed a specified threshold for a specified 

period of time steps in the test range. For example, the test may be set up to detect when the 

measured and commanded current differ by more than 1%. The Means Deviations Tests check to 

see that mean values for all selected furnace variables in the test range fall within the specified 

deviation limits from the specified targets. For example, the user may want to check that the 
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average melt rate over the test range is within ±5% of the target melt rate. Finally, the Estimator 

Means Deviation Tests check to see that mean values for all selected estimated furnace variables 

in the test range fall within the specified deviation limits from the specified targets. For example, 

the user may want to check that the average efficiency over the test range is within ±1% of the 

target efficiency. Note that all test parameters are user-settable in the monitor setup window (not 

shown). Other than the test variables mentioned above, a comprehensive list of variables 

available for means deviations tests will not be given because of their proprietary nature. 

 

 

Figure 1.  Main operating window for the SMPC VAR monitor. 

 

The VAR and ESR process monitors do not have to be connected directly to a furnace and run in 

live mode. They may be run using archived computer data files. Up to 1000 data sets may be run 

simultaneously. When more than one data set is run, the main window shown in Figure 1 is not 

active. In its place, a popup window appears showing the name of the data set currently being 

processed. Report files are generated for each data set run.  Note that in post-process mode, the 

monitor may be run and all reports generated with a single mouse click. 
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If the VAR or ESR monitor is run in live mode, provision must be made to acquire furnace data. 

Typically this is done over some type of serial interface between the furnace PLC and the host 

computer for the monitor, e.g. an Ethernet connection. Data may also be acquired directly by the 

monitor host computer from the furnace over an A/D converter. 

The VAR and ESR monitors have proven to be very effective at detecting and logging process 

upsets and anomalous melt events both in live mode as well as in post-processing mode.  Though 

this alone does not assure ingot quality, it does help establish process consistency and detect 

problems early in the processing stream.  Because of this, this technology has proven an effective 

quality tool. 

SMPC Process Controllers 

SMPC VAR controller work has resulted in an advanced, model-based controller platform that 

has three unique modes of control: 1) dynamic melt rate control; 2) ingot input power control; 

and 3) ingot pool depth control.  The first mode accurately controls the melt rate of the electrode 

(with or without electrode weight feedback) during both steady-state melting and highly transient 

melting conditions (e.g. during startup, hot-top, or common process upsets like those associated 

with electrode cracks).  The second mode controls the total input power entering the top surface 

of the ingot consisting of the sum of the electrical power from the arc and thermal power 

contained as enthalpy in the molten metal dripping from the electrode.  This method has proven 

superior to melt rate control with respect to minimizing perturbations to the solidification zone of 

the ingot where melt related defects (e.g. freckles in nickel-base alloys) originate.  Finally, the 

third mode involves direct control of the depth of the molten pool atop the ingot.  In its present 

form, this mode uses a linear, low-order VAR process model to make ingot pool depth 

predictions. The SMPC controller allows for operation in any of these modes, and also allows 

switching back and forth between modes during melting.  Each of the three modes will now be 

discussed. Note that, as of this writing, only the first mode of operation (melt rate control) has 

been developed for ESR. 

Dynamic Melt Rate Control 

The rate at which the electrode is melted is an extremely important process parameter in both 

VAR and ESR. Variations cause transients in the ingot growth rate and mushy zone thermal 

gradient, a condition conducive to the formation of melt related defects [8]. For example, such 

transients have been linked to freckle formation [9]
 
in nickel-base superalloys, as well as 

solidification white spot formation in Alloy 718 [10]. It is thought that controlling melt rate 

during transient melting and through common melt rate disturbances could lead to significant 

improvements in product yields as well as reduce the number of melt related defects in 

segregation sensitive alloys [11]. Melt rate control involves controlling electrode gap (or 

immersion depth) and electrode melting rate by allowing the process current to be whatever it 

needs to be in order to meet the melt rate reference. 

Under normal, steady-state conditions, a reasonably constant melt rate is produced by applying 

constant melting power. However, this is not the case during startup and end melting. During the 

initial stages of the remelting process, the temperature distribution in the electrode has not had 

sufficient time to achieve steady-state. As a result, melt rate continually changes under constant 
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power conditions until a steady-state temperature distribution is achieved in the electrode. 

Toward the end of melting when the melt zone approaches the end of the electrode, heat 

conduction is impeded because of the large difference in electrode and stub diameters. This 

causes heat to build up in the electrode end, driving the temperature distribution and, therefore, 

the melt rate, away from steady-state. In either case, a non-steady temperature distribution in the 

electrode tip leads directly to a non-steady melt rate at constant power. 

Of course, one does not want steady melt rates at the beginning and end of the process. During 

startup, current is ramped up after an initial hold period, each shop having its own proprietary 

ramping procedure. Similarly, near the end of melting, a current ramp down schedule (or hot-top 

procedure) is employed to eliminate or minimize shrinkage cavities in the end of the solidifying 

ingot. Both startup and hot-top procedures can be relatively complicated, employing multiple 

current ramps and holds. Given the preceding discussion, it is not surprising that the electrode 

melt rate does not linearly track the current during these procedures because of startup and end 

effects. If one wishes to accurately control melt rate during startup and hot-top, the melt rate 

controller must be capable of implementing dynamic, non-linear current schedules to account for 

the rapidly changing thermal conditions in the electrode tip. 

Transients in the electrode temperature distribution can occur during constant power melting in 

the absence of startup and end effects for a variety of reasons. An extremely dynamic situation 

arises when melting through a transverse crack in the electrode. The crack impedes heat flow 

causing material below the crack to heat up more rapidly than normal while material above the 

crack remains relatively cold. Under constant power conditions, this leads to increasing melt rate 

as the melt zone approaches the crack, followed by a rapid decrease as the melt zone passes 

through the crack. Crack disturbances can last an hour or more in standard size superalloy melts 

and are unpredictable. They are sometimes referred to as “melt rate events” in industry. 

The SMPC has developed and tested dynamic melt rate controllers for both the VAR and the 

ESR processes. The term “dynamic” is used to indicate that these controllers can “keep up” with 

highly dynamic melting situations such as those encountered during startup and hot-top, and 

while melting cracked electrodes. This is accomplished by continually estimating the thermal 

distribution in the electrode and using process efficiency as a disturbance variable as described in 

the references. The layout for the nonlinear VAR melt rate controller is shown in Figure 2 [12]. 

Definitions for the nonlinear functions are given in the reference. Figure 3 shows controller 

performance while melting through a cracked electrode [13]. The alloy used in this test was a 

nickel-base superalloy; its exact composition and the conditions under which it was melted 

cannot be specified due to the proprietary nature of the test. Note the large current oscillations 

required to hold the melt rate at its setpoint reference. Each oscillation marks a crack in the 

electrode. Dynamic melt rate control for both VAR and ESR is protected under U.S. Patent 

6,115,404. 
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Figure 2.  Schematic layout of the nonlinear VAR melt rate controller. 

 

 

Figure 3.  A graph showing the commanded current, melt rate setpoint  

and estimated melt rate while remelting a cracked superalloy electrode. 
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Ingot Input Power Control 

It was noted in the last section that relatively large current excursions are required to hold the 

melt rate constant through crack events. These excursions can give rise to ingot property 

variations as large as those introduced by melt rate excursions [14]. Hence, melt rate control has 

no inherent advantage over controlling at constant current under these conditions. It would be 

better from an ingot quality point of view to allow both the melt rate and current to vary in such a 

way that the total power entering the top ingot surface is controlled to a constant setpoint value. 

This is ingot input power control, sometimes called pool power control. The SMPC has 

developed and tested an ingot input power control mode for VAR and some information is 

available in the literature [14].  Development work on ESR pool power control has not yet 

begun. 

The layout for the VAR ingot input power controller is shown in Figure 4 [15]. This is a non-

linear controller and the VAR Estimator is mathematically identical to that used in the melt rate 

controller. The two functions fI and fG are given Reference 14. This controller has been 

successfully tested on a laboratory scale VAR furnace melting 150 mm diameter 304SS and 

Alloy 718 electrodes into 200 mm ingots. It has also been successfully tested on an industrial 

furnace melting 430 mm diameter superalloy electrodes into 510 mm diameter ingots. The 

details of the industrial tests are consider proprietary to the SMPC and will not be discussed. 

Suffice it to say that the controller performed as expected when melting through cracks. A patent 

application has been submitted to the U.S. Patent Office to protect this technology. 

 

 

Figure 4. Schematic layout for the SMPC ingot input power controller. 
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Ingot Pool Depth Control 

VAR ingot pool depth control is the newest control technology developed and tested by the 

SMPC. Work has not yet begun on the ESR version. The goal is to control the shape of the liquid 

pool atop the growing ingot during both steady-state and transient melting conditions. Though 

this is an extremely difficult problem, the payoff for success is very high. If the pool depth can 

be precisely and stably controlled, the goal of producing material free of defects formed because 

of unstable, uncontrolled solidification will have been virtually attained. This may enable 

production of very large diameter superalloy ingots because deep pools are very sensitive to 

process transients that perturb pool shape and give rise to freckling in these materials. 

In its current configuration, the pool depth controller uses the same VAR Estimator used in the 

other controllers to estimate electrode gap, electrode thermal boundary layer, and process 

efficiency for feedback to the controller. Additionally, the controller uses a low-order ingot 

model to estimate pool depth at one or more locations along the ingot radius. Specific 

information about the ingot model is not available for publication. The open-loop version of the 

controller has been successfully tested on a laboratory scale VAR furnace melting 150 mm 

diameter Alloy 718 electrodes into 200 mm diameter ingots. A closed loop version of the 

controller is under development. Because of the proprietary nature of this work, no further details 

of this controller will be given. A patent application has been submitted to the U.S. Patent Office 

to protect this technology. 

Summary 

 

Over the past few years, the SMPC has developed VAR and ESR process monitors and 

controllers in an effort to improve ingot quality and work toward the goal of eliminating melt 

related defects in ingots. The process monitors use Kalman filter technology to provide estimates 

for process variables that can be compared with measurements to detect process upsets. 

Conventional input data tests are also used to detect and flag process upsets and events that may 

give rise to melt related ingot defects. The process estimators used in these monitors have been 

incorporated into VAR and ESR melt rate controllers. This technology allows precise control of 

melt rate during highly transient conditions such as encountered during startup, hot-top, or when 

remelting cracked electrodes. 

 

In addition to highly dynamic melt rate control, ingot input power control has been developed 

and tested for the VAR process. This control technology allows direct control of the total power 

entering into the ingot pool surface from both the arc and the molten metal enthalpy. This type of 

control has been shown to be more effective at minimizing the perturbations to the solidification 

zone during a crack event that either constant current control or constant melt rate control. 

 

Finally, an open loop ingot pool depth controller has been developed and tested on a laboratory 

scale furnace during VAR of Alloy 718. This control technology is in its infancy but as more 

effective and advanced forms of pool depth control are developed it will allow for direct control 

of the solidification zone in the ingot, a capability that will allow melt engineers to directly 

manipulate and evaluate those ingot conditions that give rise to the formation of melt related 

defects. 
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