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 elbaT I. M  lacinahce P  seitrepor  fo C  dlo R  dello D  lau P  esah S sleet  (T  gnola gnitse R  gnillo

D  )noitceri A cc gnidro  T  o  932ADV [1] 

 Y092RC T094 - PD  T095Y033RC - PD  T087Y044RC - PD  T089Y095RC - PD  T089Y007RC - PD  

 htgnertS dleiY
R 0p  2. aPM   092 - 083   033 - 034   044 - 055   095 - 047   007 - 058  

 htgnertS elisneT
aPM mR   094 - 006   095 - 007   087 - 009   089 - 0311   089 - 0311  

 noitagnolE
A mm05  % 62 .nim  12 .nim  51 .nim  11 .nim  9 .nim  

 noitagnolE
A mm08  % 42 .nim  02 .nim  41 .nim  01 .nim  8 .nim  

n- n eulav 4-6 91.0 .nim  81.0 .nim  51.0 .nim  - - 

n- n eulav 01 - gA/02  51.0 .nim  41.0 .nim  11.0 .nim  - - 

 gninedrah ekaB
HB xedni 2 aPM  03 .nim  03 .nim  03 .nim  03 .nim  03 .nim  

n4-  6 opxe gninedrah niarts  tnen 6 dna 4 neewteb denimreted niarts citsalp %  
n 01 -  gA/02 enopxe gninedrah niarts 02 dna 01 neewteb denimreted tn %02<gA fi gA ro niarts citsalp %  
 

 elbaT II .  lacimehC C noitisopmo   fo C  dlo R  dello D  lau P  esah S sleet  A cc gnidro  T  o  932ADV [1] 

 Y092RC T094 - PD  T095Y033RC - PD  T087Y044RC - PD  T089Y095RC - PD  T089Y007RC - PD  

% C .xam  41.0  51.0  81.0  02.0  32.0  

% iS .xam  05.0  57.0  08.0  00.1  00.1  

% nM .xam  08.1  05.2  05.2  09.2  09.2  

% P .xam  080.0  040.0  080.0  080.0  080.0  

% S .xam  510.0  510.0  510.0  510.0  510.0  

% lA  510.0 - 00.1  510.0 - 05.1  510.0 - 00.2  510.0 - 00.2  510.0 - 00.2  

% )oM+rC( .xam  00.1  04.1  04.1  04.1  04.1  

% )iT+bN( .xam  51.0  51.0  51.0  51.0  51.0  

% B .xam  500.0  500.0  500.0  500.0  500.0  
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The well known designations DP600 and DP780 can be used instead of CR330Y590T-DP or 

CR440Y780T-DP. Accordingly, the specification allows chemical compositions over a wide 

range of alloying elements as long as the requirements regarding mechanical properties are 

fulfilled and cold forming properties (including edge stretching or bending in some applications) 

are not restricted by martensite lines, slag inclusions or segregations. At first sight a steady 

increase of the C content from 0.05% to around 0.20% within the allowed range of VDA239 

appears appropriate for realizing increasing strength levels from 490 MPa to 980 MPa. Other 

elements such as Mn, Si, Cr and P, which increase strength and hardenability, complete the 

analysis. Pursuing the strategy of continuously increasing the C content, however, bears a 

process related risk as casting of melts in the peritectic range causes problems. In order to avoid 

these problems, alloying strategy-1 excludes the peritectic range, ie. lower strength DP grades 

are being produced with C content < 0.1% whereas a higher C content is used for higher strength 

grades (Figure 1). In the case of DP600, two principal alloys are possible. In a low C variant, an 

increased Mn content has to be selected, whereas the high C variant requires a lower Mn addition. 

Generally for the higher strength DP grades, the Mn content is raised up to a level of around 

2.2%. Practical experience revealed in this case that the applicable processing windows could 

vary considerably, depending on the chemical analysis. Even small deviations from the ideal 

processing route of such DP steels result in inhomogeneous microstructure, banding, varying 

mechanical properties and severe anisotropy. Consequently, stringent limitations in the 

manufactured properties (sometimes directionally dependent) and premature damage are being 

observed. The optimum microstructure and hence properties of cold rolled hot-dip galvanized 

DP steels require an exact adjustment, not only for the chemical analysis, but also for the hot 

rolling conditions, cold reduction and annealing conditions. 

 

 

Figure 1. C and Mn alloying strategies for DP grades defined by VDA239  

(the peritectic C range preferably to be avoided is indicated in red). 
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Table III reveals several examples of alloying concepts for DP600 and DP780 grades being 

commercially supplied by major European steelmakers. It is evident that some DP600 concepts 

are indeed designed to avoid the peritectic reaction, whereas several others are in the unfavorable 

peritectic C range (the element C has the strongest influence on the peritectic of steel). The Mn 

level is typically on the high side for sub-peritectic DP600 concepts. Additional hardenability is 

achieved by either an increased Cr content (A.1, B.2, D.1, E.2, F.1, F.3) or by Mo alloying (B.1, 

C.2, E.1, E.3, F.2) in combination with a reduced Cr (and sometimes Mn as in E.3, F.2) content. 

In one approach, (E.2), B microalloying is used to increase hardenability. This concept implies a 

small Ti addition to fix interstitial N. 

 

The alloy concepts for DP780 generally apply C additions in the peritectic range and high Mn 

levels. In the majority of cases Cr is used as a second hardenability element whereas Mo is rarely 

used for this grade. It is apparent that several DP780 concepts use Nb microalloying and in one 

case Ti microalloying, while B microalloying is not being applied in these examples. 

 

The considerable variation in alloying concepts, especially for DP600 grades, has in some part 

arisen historically. On the other hand, in several cases limitations within the production route 

mandate certain alloying elements. More precisely, the cooling power in the hot-dip galvanizing 

line is one of the most decisive issues in determining the bulk-alloying concept (Figure 2). Lines 

having limited cooling power require either rather high alloying contents of Mn and Cr, or 

alternatively, a relatively smaller Mo addition. Due to the significant amount of HDG DP600 

being produced, steelmakers often have to employ several coating lines flexibly, so that usually 

the line with the weakest capability determines the overall alloy concept. 

 

Table III. Commercialized Alloy Concepts for DP600 and DP780 by European Steel Mills 

(alloy additions in wt.%) 

Producer Concept 
C Si Mn P Al Cr Mo Ti Nb B 

DP600 

A A.1 0.09 0.13 1.49 0.014 0.05 0.75 - - - - 

B 
B.1 0.07 0.02 1.85 0.014 0.05 0.21 0.18 - - - 

B.2 0.09 0.24 1.78 0.013 0.04 0.56 - - - - 

C 
C.1 0.09 0.25 1.88 0.019 0.04 0.21 - - - - 

C.2 0.12 0.32 1.38 0.013 0.03 0.25 0.07 - - - 

D D.1 0.11 0.19 1.62 0.012 0.05 0.46 - - - - 

E 

E.1 0.11 0.18 1.39 0.011 0.04 0.15 0.20 - - - 

E.2 0.11 0.21 1.51 0.012 0.03 0.46 - 0.03 - 0.007 

E.3 0.10 0.07 1.24 0.014 0.91 0.03 0.20 - - - 

F 

F.1 0.10 0.21 1.78 0.010 0.03 0.44 - - - - 

F.2 0.11 0.11 1.23 0.014 0.88 0.04 0.20 - - - 

F.3 0.11 0.23 1.49 0.009 0.03 0.66 - - - - 

  DP780 

A A.2 0.15 0.18 2.08 0.011 0.04 0.26 - - 0.02 - 

C 
C.3 0.15 0.21 1.97 0.023 0.03 0.25 - - - - 

C.4 0.15 0.21 1.91 0.016 0.03 0.19 - 0.03 - - 

D D.2 0.14 0.30 1.75 0.012 0.04 0.52 - - 0.02 - 

F 
F.4 0.16 0.17 1.72 0.013 0.03 0.32 0.16 - - - 

F.5 0.14 0.30 1.76 0.010 0.03 0.50 - - 0.02 - 
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Figure 2. Influence of Mn and other bulk alloying elements on the critical cooling rate for 

producing low-C dual phase steel on galvanizing lines [3]. 

 

A particular advantage of adding Mo to hot dip galvanized DP steels refers to the coating quality. 

Elevated amounts of Mn, Si or Cr can cause problems of surface wetting and adhesion of the 

zinc layer. This is related to the fact that these elements can enrich at the surface during 

intercritical annealing, forming surface oxides. The presence of an oxide layer lowers the 

wettability of the surface. Mo on the contrary shows no tendency to enrich and form an oxide 

layer at the surface. Therefore, Mo alloyed concepts such as E-I, E-III and F-II with significantly 

reduced Mn and Cr additions are superior concepts for hot-dip galvanizing processes. 

 

The bulk alloying concepts of DP780 grades are much more similar throughout the supplier base. 

This is because the quantities of HDG DP780 demanded by the market thus far have been quite 

limited. Therefore, steelmakers can run the production exclusively on the more capable 

galvanizing lines allowing a reduction in the amount of hardenability alloys.  

 

Microalloying with Nb, providing microstructural refinement, has been found to significantly 

improve bendability, particularly of DP780 steel [3]. This aspect will be detailed in a later 

section. Basically, it is sufficient to add a small amount of Nb to the otherwise unchanged alloy 

concept (A.2) to enable the improvement, as is indicated in Figure 3. 
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Figure 3. DP780 steel under 3-point bending conditions (acc. to VDA238) and 180°-bending 

before and after microstructural refinement (corresponds to steel A.2 in Table III) [4]. 
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Cornerstones of a Novel Platform - Alloying Concept for Low-C DP Steels 

 

An alternative to current mainstream alloy concepts for DP steels is indicated by strategy 2 in 

Figure 1, wherein the C content is principally limited to a maximum of 0.1% for the entire 

strength range. When pursuing such a low-C approach, it is important to consider the 

hardenability concept in detail. Reducing the C content brings the bainite nose forward, 

increasing the risk of forming bainite during holding at the zinc bath temperature, as is 

schematically demonstrated by Figure 4. It has been discussed already that increased additions of 

Mn and Cr, as well as a smaller addition of Mo, can delay bainite formation. Furthermore, 

microstructural refinement by Nb microalloying can assist the rapid formation of ferrite during 

cooling, thus promoting C enrichment in austenite. A higher austenite C content facilitates 

transformation into martensite rather than into bainite. 

 

Based on these ideas, it was decided to develop an alloy platform concept that is strictly limited 

to a maximum of 0.1%C. The hardenability concept to be defined should provide: 

 

 high robustness against process variations, resulting in low scatter of the specified 

mechanical properties; 

 the possibility of producing the grade on galvanizing lines with somewhat different time-

temperature characteristics; 

 the possibility of producing increased sheet gages up to 2.5 mm; 

 good quality of the galvanized surface; 

 high resistance against edge cracking (high hole expansion ratio). 

 

 

 

Figure 4. Alloying effects on bainite formation in low-C DP steel during a hot dip galvanizing 

cycle. 
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The qualification of respective alloy concepts has been done initially by laboratory simulation 

for the DP600 and DP780 grades. Thereafter, industrial trials have been initiated to verify the 

alloy concept under realistic production conditions in the two hot-dip galvanizing lines available 

at Salzgitter Flachstahl GmbH. Subsequently, the established industrial concept was tested 

regarding press shop performance by stamping various parts in serial production dies. 

 

Microstructural Refinement in DP Steels and the Essence of Nb Microalloying 

 

Several prior research efforts have indicated that microstructural refinement in DP steels not only 

enhances strength, but also is beneficial to secondary (ie. non-specified) cold forming properties, 

such as bending, stretch flanging or hole expansion. 

 

For instance, Calcagnotto et al. [5] demonstrated that severe grain refinement in DP steel could 

raise yield as well as tensile strength by about 20%. This strength surplus provides a higher 

safety margin with respect to the minimum specified values on the one hand and on the other 

hand, the strength surplus provided by grain refinement allows a reduced martensite content in 

the dual phase microstructure and hence increased elongation. 

 

Grain refinement of the dual phase microstructure was shown to have a considerable positive 

effect on the bending behavior of cold rolled DP steel. Figure 3 demonstrates that the grain-

refined steel (A.2) supports a higher bending force at an increased bending angle. The non-grain-

refined steel fails at a bending angle of around 90° so that the production of typically U-shaped 

profiles is problematic. The grain-refined steel on the contrary offers a sufficient margin for the 

forming process thus offering clearly improved process robustness. Furthermore, the grain-

refined DP steel allows a tighter minimum radius for 180°-bending showing an improvement of 

around 30% (Figure 3). 

 

Grain refinement of the final dual phase microstructure is for a large part inherited from the hot 

rolled microstructure. The prior hot rolled strip microstructure can be principally adjusted to be 

either ferritic-pearlitic or bainitic. The occurrence of either is mainly related to the coiling 

temperature. Bainitic hot rolled strip will be typically finer grained than ferritic-pearlitic hot 

rolled strip. Yet Nb microalloying provides microstructural refinement, irrespective of the 

coiling temperature. 

 

Irrespective of whether or not the processing route for producing DP steel is adapted to Nb 

microalloying, the effect of Nb is always noticeable. Therefore, it is important to perform a 

holistic consideration of possible effects of Nb during the entire process chain and then to 

optimize individual processing steps. 

 

The most prominent effect of Nb is recrystallization delay during hot rolling leading to 

pancaking of the austenite. The pancaked austenite transforms into a fine-grained polygonal 

ferrite and dispersed pearlite islands under conventional coiling conditions. This condition is 

usually chosen if the hot strip is destined for further cold rolling followed by intercritical 

annealing. This refined ferritic-pearlitic microstructure is inherited by the final material 

producing a finer grained ferrite matrix embedding smaller martensite islands, as shown in 

Figure 5, where a Nb microalloyed variant is compared to a Nb-free one for a coiling 
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temperature of 680 °C. Comparing these microstructures, one has to state that the effect of Nb is 

partly overlaid by the effect of Si, the Si content being higher in the non microalloyed steel and 

thus promoting ferrite formation. 

 

 

 

Figure 5. Effect of Nb microalloying on ferritic-pearlitic microstructure of low-C DP steel after 

coiling at 680 °C. 
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Figure 6. Effect of Nb microalloying on bainitic microstructure of low-C DP steel 

after coiling at 500 °C. 

 

As mentioned earlier, an option for producing cold rolled DP steel is coiling the hot strip in the 

temperature range of 500 to 550 °C. This results in a bainitic microstructure of the hot strip, as 

shown in Figure 6, for the same low-C chemistry. This observation agrees with results published 

by Pichler et al. [6] and was also reported by [7]. For example, the CCT diagram shown for the 

Nb microalloyed variant in Figure 7 demonstrates the resulting microstructures for two coiling 

temperatures. Because a significant portion of Nb remains in solid solution under this coiling 

condition, it is available for precipitation during subsequent intercritical annealing [8]. 
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Nb microalloying has multiple effects with regard to the metallurgical mechanisms occurring 

during the intercritical annealing cycle [6,9]. Nb precipitates usually exist in the hot rolled strip 

when coiling at conventional temperatures in the range of 600-650 °C. Any Nb remaining in 

solid solution has the potential to precipitate in situ during the annealing cycle. The precipitation 

potential is enhanced when coiling temperature is lowered to 500-550 °C as more Nb is retained 

in solid solution [8]. This coiling condition also results in a very fine-grained bainitic 

microstructure. Experiments have shown that in either case Nb precipitation is practically 

complete after reaching the intercritical soaking phase. For the bainitic coiling condition most of 

the Nb is retained in solid solution, which then precipitates during the heating cycle as very fine 

particles with a relevant contribution to strengthening. The existing precipitates produced in 

larger amounts after conventional coiling conditions are subjected to some degree of coarsening 

during the heating phase of the annealing cycle and are hence less strength effective. 

 

Nb delays the recrystallization during reheating of cold deformed ferrite either by precipitation 

or by solute drag of Nb on the grain boundaries. Experience with Nb alloyed DP steel indicated 

that the recrystallization temperature is typically raised by around 20 °C as compared to the same 

base analysis without Nb addition. The retarded recrystallization also preserves dislocation 

networks that act as nucleation sites for austenite. Hence austenite formation should be 

accelerated in Nb alloyed DP steel [10]. Furthermore, the grain-refined microstructure of an Nb 

microalloyed strip additionally provides an increased grain boundary area for nucleation sites for 

austenite when annealing in the intercritical temperature range. Measurements have indeed 

confirmed that at a given intercritical annealing temperature, the amount of austenite in the Nb 

added alloy is higher compared to the Nb-free base alloy [10]. During the soaking phase, C 

partitioning is accelerated and is more homogeneous within the austenite from the finer grained 

microstructure of the Nb alloyed strip, due to the shorter diffusion distances in the smaller grains. 

 

By slow cooling to the (sub-Ae3) quenching temperature, a defined amount of new ferrite is 

being nucleated from the existing austenite. Again, the refined microstructure of Nb 

microalloyed steels exhibits quicker kinetics for this ferrite formation. A consequence of the 

enhanced amount of ferrite is that the remaining austenite phase is further enriching in C. This 

means that the hardenability of the C-enriched and smaller grained austenite is improved. With 

regard to mechanical properties, Nb microalloyed DP steel should have less but stronger 

martensite as a second phase when subjected to a given annealing cycle, as compared to the Nb-

free base alloy. 
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Laboratory Development and Pre-qualification of Low-C DP Platform Concepts 

 

The development stages described here have the purpose of qualifying different alloy concepts 

which all have low C content (max. 0.1%) in common. The various trial concepts have an 

increased addition of Nb, partly in combination with other microalloying elements such as Ti and 

B (Table IV). The content of bulk alloying elements such as Si (0.25%), Mn (1.85%) and Cr 

(0.4%) were kept constant. Other elements were not employed. The aim was to clarify how these 

alloy concepts, in combination with adapted hot and cold rolling conditions, as well as annealing 

parameters, influence the microstructure and processing properties of DP steel. 

 

All five microalloyed concepts, as well as a microalloy-free reference variant, were finish rolled 

at 920 °C to a hot rolled sheet gage of 3 mm. Subsequently, all samples were coiled at both 

500 °C and 680 °C, resulting in a bainitic or ferritic-pearlitic microstructure, respectively. The 

strength data and microstructural characteristics for all combinations are summarized in Table V. 

It is evident that increasing the Nb content from 0 to 0.03% results in the expected 

microstructural refinement, irrespective of the coiling temperature. The consequence is an 

increase of the flow stress by about 50 MPa (see also Figure 8). Further addition of Ti and/or B 

to the higher Nb alloyed variant does not lead to significant changes in the hot strip properties. 

Comparing W-3, W-4 and W-6, one has to consider that the effective B content (B in solid 

solution) of alloy W-4 is significantly lower than 0.003 due to the absence of Ti, ie. some of the 

B will be tied up with N. 

 

Table IV. Base Alloy Concept and Microalloying Options for Laboratory Trials 

and Industrial Pre-qualification (wt.%) 

Base alloy Microalloy option Nb Ti B 

<0.1%C 

0.25%Si 

1.85%Mn 

0.40%Cr 

50 ppm N 

100 ppm P 

W-1 0.00 0.00 0.000 

W-2 0.015 0.00 0.000 

W-3 0.030 0.00 0.000 

W-4 0.030 0.00 0.003 

W-5 0.030 0.030 0.000 

W-6 0.030 0.030 0.003 

 

Each of the hot rolled variants was stepwise cold rolled on a laboratory rolling mill to a total cold 

reduction of 60%. The yield strength was determined by tensile testing for the different reduction 

stages. The flow curves are shown in Figure 9. Generally, strong work hardening is observed 

with increasing cold reduction. The group of flow curves originating from the bainitic coiled 

material (cooling option HR1) is consistently at least 150 MPa higher than the ferritic-pearlitic 

material (cooling option HR2). Only the flow curves of option HR2 were finally used to 

calculate cold reduction schedules for industrial trials since the material coiled under option HR1 

was too strong for efficient cold rolling. 
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Table V. Properties and Microstructural Characteristics of Hot Strip (3 mm) 

Under Two Coiling Conditions 

HR1  

(FRT: 920 °C 

CT: 500 °C) 

W-1 

(Nb free) 

W-2 

(+Nb) 

W-3 

(++Nb) 

W-4 

(++Nb+B) 

W-5 

(++Nb+Ti) 

W-6 

(++Nb+Ti+B) 

YS (MPa) 480 512 533 564 553 525 

TS (MPa) 612 645 679 706 682 741 

Grain size 

(ASTM) 

12.5 13.5 13 13 12.5 13.5 

Ferrite (%) 25 15 25 15 15 10 

Pearlite (%) 15 5 5 5 5 5 

Bainite (%) 60 75 65 70 75 70 

Martensite (%) 0 5 5 10 5 15 

HR2  

(FRT: 920 °C 

CT: 680 °C) 

W-1 

(Nb free) 

W-2 

(+Nb) 

W-3 

(++Nb) 

W-4 

(++Nb+B) 

W-5 

(++Nb+Ti) 

W-6 

(++Nb+Ti+B) 

YS (MPa) 310 345 363 348 386 366 

TS (MPa) 464 485 495 483 497 496 

Grain size 

(ASTM) 

10 11 11 10 11 10 

Ferrite (%) 75 85 78 78 78 85 

Pearlite (%) 25 15 22 22 22 15 

Bainite (%) 0 0 0 0 0 0 

Martensite (%) 0 0 0 0 0 0 

 

In a separate development project, a processing route allowing the direct annealing and 

galvanizing of bainitic coiled (~ 500 °C) hot strip has been designed using a modified analysis of 

variant W-6. By this route hot dip galvanized DP steels in the gage range of 2 to 3 mm, having 

minimum yield and tensile strength of 330 MPa and 580 MPa, respectively could be successfully 

produced. The details of this development will be published elsewhere. 
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The further development process considered only cooling variant HR2 in combination with the 

analytical variants W-2 (0.015%Nb) and W-6 (0.030%Nb +Ti+B), as well as the non-

microalloyed reference variant W-1. With these it had to be clarified which cold reduction and 

which annealing temperature program would deliver the best properties. However, one has also 

to consider that, due to the strong cold working, the tandem mill is exposed to higher loads. Thus, 

the cold roll reduction has to be kept as small as possible. 

 

Figure 10 shows two CCT diagrams which were calculated using JMatPro® [11]. It 

demonstrates schematically for the Nb microalloyed variant W-3 that cold reduction (in this case 

57%) results in an accelerated formation of ferrite. As an approach to simulate this influence, the 

grain size was varied from ASTM no. 9 to ASTM no. 14 for the cold-rolled material. In order to 

reasonably study this effect, samples of 2.0 mm thickness (33% cold reduction) as well as 

1.3 mm thickness (57% cold reduction) were annealed by time-temperature cycles that 

correspond to the characteristics of the available two (horizontal and vertical) galvanizing lines. 

According to Figure 11 these lines are characterized by: 

 

 High annealing temperature, short holding period and moderate cooling rate (horizontal 

line, HDG1); 

 Lower annealing temperature, long holding time and accelerated cooling (vertical line). 

 

In the vertical line (HDG2) there is the additional possibility of cooling the strip to below 300 °C 

before the zinc pot. By rapid induction heating, the strip can then be reheated to the required zinc 

bath temperature. 

 

It turned out that a cold reduction of 57% is sufficient to obtain the desired microstructure as 

well as mechanical properties when the annealing and cooling strategy is appropriately adjusted. 

This applies for both time-temperature cycles, ie. those for the vertical as well as horizontal lines. 
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Figure 10. Influence of cold reduction on phase formation in variant W-3, calculated using 

JMatPro® [11]. 

 

 

Figure 11. Typical annealing cycles of the two hot dip galvanizing lines used by Salzgitter 

Flachstahl GmbH for production of DP steel.  
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Industrial Implementation and Results 

 

Large-scale trials were conducted on both hot dip galvanizing lines using strip gages between 1 

and 2 mm and strip widths up to 1500 mm. The hot rolling was according to condition HR2 and 

the cold reduction varied between 40 and 60%. With regard to the chemical composition, the 

coils represented concepts W-1, W-2 and W-6. Particularly, the adaption of furnace operation 

conditions, as well as cooling intensity to the line speed, assured that the simulated optimum 

parameters could be achieved. The obtained results, with respect to mechanical properties and 

microstructural characteristics, are summarized in Table VI.  

 

Table VI. Properties and Microstructural Characteristics of Cold Rolled Strip 

(Cold Reduction 57%) for the Two Different Galvanizing Cycles 

 HDG1 HDG2 

Mech. properties in 

Transverse direction 

W-1 

(Nb free) 

W-2 

(+Nb) 

W-6 

(++Nb+Ti+B) 

W-1 

(Nb free) 

W-2 

(+Nb) 

W-6 

(++Nb+Ti+B) 

YS (MPa) 336 392 537 317 384 497 

TS (MPa) 560 655 856 525 626 783 

A80 (%) 26 22 15 28 23 18 

n-value 0.17 0.16 0.12 0.17 0.15 0.11 

Grain size (ASTM) 13 13 13 11 11 12 

Ferrite (%) 70 60 65 80 75 65 

Bainite (%) 10 20 0 5 15 0 

Martensite (%) 20 20 35 15 10 35 
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Figure 12. Mechanical properties of produced coil materials in relation to property ranges 

specified by VDA239 (filled symbols: horizontal HDG1, open symbols: vertical HDG2). 
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Figure 13. A-Pillar lower outside made from 2 mm CR330Y590T-DP (option W-2). 

 

 

 

Figure 14. Seat cross member made from 1 mm CR330Y590T-DP with marked samples for 

tensile tests and schematic tensile test specimen showing dimensions. 

 

Comparison of actual mechanical properties, ie. after forming and baking versus the original 

properties in the as delivered sheet, is provided in Table VIII for three different trial parts. The 

following observations can be made: 

 

1. The as-delivered material reveals a very high isotropy for both yield and tensile strength, 

which is particularly favorable for stretch forming operations; 

2. After forming, yield strength is significantly increased by work hardening. The amount of 

work hardening depends on the severity of deformation and the direction. The magnitude 

of the work hardening effect can bring an increase of over 200 MPa in yield strength and 

of around 50 MPa in tensile strength; 

3. The bake hardening effect was also found to be rather high as is typical for DP steels. In 

some cases the yield strength increase by this effect is in the order of 100 MPa while its 

influence on the tensile strength is rather limited. 
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Table VIII. Actual Measured Properties in Trial Parts after Stamping (Work Hardening) and 

Baking Compared to the Original Sheet Properties 

Stamped part 
Condition Yield strength (MPa) Tensile strength (MPa) 

Orientation to rolling direction transverse parallel transverse parallel 

Seat cross member 

As delivered sheet (1 mm) 377 374 660 658 

Pressed part (PP) 570 563 669 731 

PP after baking (180 °C / 20 min) 658 622 687 697 

A-pillar lower outside 

As delivered sheet (2 mm) 362 363 620 622 

Pressed part (PP) 447 385 626 622 

PP after baking (180 °C / 20 min) 566 560 644 641 

Reinforcement D-pillar 

As delivered sheet (1 mm) 377 374 660 658 

Pressed part (PP) 605 580 702 645 

PP after baking (180 °C / 20 min) 639 659 678 695 

 

Resistance against Edge Cracking 

 

DP steels generally allow forming of complex shapes due to their high elongation. However, 

practical experience repeatedly revealed unexpected failure, such as sheared edge splitting during 

flanging operations, as indicated in Figure 15. Highly localized strain leads to the initiation of 

micro damage at the ferrite-martensite phase boundary. The induced micro damage subsequently 

grows into a propagating crack under the applied stress. The larger the size of an initial damage 

site, the smaller is the critical stress required for crack propagation. A crack typically propagates 

along the ferrite-martensite interface. Hence, a refined microstructure and non-agglomerated 

martensite islands, in particular, should characterize optimized DP steel. 

 

Another significant influence on the hole expansion ratio of DP steel originates from the 

difference in hardness between the soft ferrite phase and the hard martensite phase. Hosoya et al. 

[12] have demonstrated this effect by performing different low temperature tempering treatments 

to quenched DP steel in the strength range of 800 to 1000 MPa. Their results suggest a linear 

relationship between the hardness difference and the hole expansion ratio. Therefore, the volume 

fraction of martensite in the steel appears to be of less significant impact, provided that its 

distribution is homogeneous. 

 

The developed low-C microalloyed DP steel concept principally provides all the mentioned 

prerequisites for high resistance against edge cracking: 

 

 Nb microalloying provides general refinement of ferrite and martensite, resulting in 

relatively short hard-to-soft interfaces; 

 Reduced segregation and pearlite banding due to sub-peritectic alloy design in 

combination with optimized coiling conditions after hot rolling avoid martensite 

agglomeration; 

 The low overall C content leads to reduced C enrichment in austenite during intercritical 

annealing (for a given austenite fraction, which in a lower C steel will occur at a higher 

annealing temperature) and hence softer martensite after quenching resulting in a smaller 

hardness difference between ferrite and martensite phases. 
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Benchmarking of the newly developed Nb microalloyed DP600 grade (variant W-2) versus non-

optimized reference materials of the same grade using hole expansion testing according to ISO-

TS 16630 indeed revealed a clearly superior performance. The hole expansion ratio of the 

developed low-C steel is above 60%, while that of existing non-optimized DP steels of 590 MPa 

strength level shows only values of around 40% (Figure 16). Although the hole expansion ratio is 

currently not specified by VDA239, it is an important criterion in several automotive markets. 

Accordingly, it can be expected that the hole expansion ratio may be included in VDA239 during 

a future revision of this specification. 

 

 

Figure 15. Sheared edge cracking phenomenon in DP steel under stretch flanging conditions [13]. 

 

Figure 16. Performance of newly developed low-C Nb microalloyed DP steel in ISO-TS 16630 

hole expansion test in comparison to non-optimized reference material. 
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Conclusions 

 

A low C based modular alloying concept for hot dip galvanized DP steels has been developed 

and successfully tested on press stamped parts using commercial dies. 

  

Based on laboratory simulations, a common alloy platform based on low C, Si, Mn and Cr was 

defined. Systematic variation of the Nb microalloy content, as well as selective additional 

microalloying of Ti and B allowed producing DP steels in the strength range of 500 to 800 MPa. 

 

The concept was shown to be robust under greatly varying processing conditions in the cold 

rolling and galvanizing operation. This allows running the same alloy concept through two rather 

different galvanizing lines. It is also possible to produce galvanized DP steel with a large 

thickness. The mechanical properties of all grades safely meet the requirements of the VDA239 

specification. Very good isotropy of properties could be also verified. Cold working and bake 

hardening were observed to provide a substantial strength increase in finished press stamped 

parts. 

 

The developed DP steel furthermore exhibited a substantially improved hole expansion behavior. 

This enhances the resistance against cracking under particular forming operations such as stretch 

flanging or bending. 
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