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Abstract 

 

A series of both stress-controlled and strain-controlled low cycle fatigue tests were conducted on 

alloy Inconel 718 to investigate the impact of various parameters on the behaviour of the 

material. Namely, focus was placed on the influence of major parameters such as the cycle 

frequency, the strain/stress rate, the holding time at various stress levels, the stress relaxation and 

the fatigue stress ratio. A detailed characterisation of the fatigue-induced rupture surfaces was 

performed to analyse the role of the alloy microstructure on the mode of crack propagation. In 

order to account for the time dependent effect of the mechanical response of the alloy, the 

Portevin-Le Châtelier effect and the oxidation behaviour of the material are discussed. Results 

are analysed, in terms of Manson-Coffin plots, to discriminate the relative impact of the various 

tested parameters on the stress/strain response and the fatigue life of the material. 

  

Introduction 

 

High Temperature low-cycle fatigue materials is a limiting factor in many industrial fields : the 

related rupture of components is a most common cause of service failure. It is a global problem 

involving investigations of both metallurgists and mechanical engineers. The development of the 

applied technology and the increasing demand for high performance structures and components 

require to work under severe operating conditions, i.e. high stresses, high temperature and 

variable frequencies.  

 

Inconel 718 is a versatile material that can be employed for different applications where  

operations at elevated temperature may induce the initiation of fatigue failure.[1] 

The detailed understanding of the mechanisms responsible for the fatigue damage is a useful 

mean to improve the behaviour and the mechanical response of the material subject to cyclic 

loading. Basically, three factors must be considered to understand fatigue fracture. Namely, the 

level of the maximum tensile stress, the value of the stress ratio and the number of applied cycles 

that must be all high enough to provoke detrimental failure. In addition, various parameters 

either intrinsic, e.g. the composition, the grain and/or precipitate size or extrinsic, i.e. parameters 

related to the fatigue test may have a strong impact on the fatigue behaviour. [2] 
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The aim of the paper is to focus on those test-dependent parameters, in order to emphasize their 

relative influence on the fatigue behaviour of the material. Tests were conducted at 550°C, a 

temperature high enough to provoke detrimental oxidation that can alter the overall mechanical 

response of the material. 

 

Experimental Procedure 

Material 

 

The weight percent composition of the alloy is reported in table 1: 

      

Fe             Cr             Nb             C             Mo             Ni             Al             TI    

 

               19.0          18.0  5.20          0.04           3.0             Bal.          0.50          0.90 

 
Table 1. Weight percent (wt %) composition of Inconel 718. 

 

The material was received in the form of 20 mm diameter forged bar. The heat treatment 

consisted of a solution annealing at 955°C, followed by an air quenching and the usual aging 

treatments: 8 hours holding at 720°C, cooling at 50°C/h down to 620°C and a final holding at 

620°C for 8h. The resulting microstructure is observed in Fig 1: the material shows a small grain 

size (ASTM 12) and a clear presence of delta phase in the shape of thin platelets preferentially 

formed on grain boundaries. The precipitation of this phase, due to the segregation of carbides 

(NbC or TiC) guarantees the small grain size of the alloy.  

 

Fig 2 shows a typical stress-strain curve at 550°C: a Portevin-Le Chatelier (PLC) effect occurs 

for a strain rate of 10
-3

 s
-1

. As previously indicated by Garat, the amplitude of PLC stress 

serrations can be as high as 100 to 200 MPa. The interaction between PLC effect and LCF will 

be investigated in the next sections, especially regarding the strain rate influence on the fatigue 

behaviour.[3]  

 

 

 
Figure 1. Microstructure of Inconel 718 after conventional heat treatment. 
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Figure 2. Typical stress-strain relation for a uniaxial tensile test at 550°C. 

 

Fatigue test  

 

Isothermal fatigue behaviour of Inconel 718 was investigated at 550°C in laboratory air: all tests 

were conducted using a uni-axial 250 kN Schenck fatigue machine coupled with an induction 

heating device. The cycle was monitored and measured via a software running on a personal 

computer. Solid smooth cylindrical specimen with Φ=9 mm diameter and 15 mm cylindrical 

calibrated gauge length were used to perform tests. All the specimens were polished to achieve a 

surface roughness of Ra= 0.015 µm. Specimens were induction heated with a Celes high 

frequency power supply (2 kW, 100-400 kHz): an original water-cooled induction coil was 

designed and manufactured to ensure uniform temperature along the gauge length and through 

the cross section of the specimen. Longitudinal, circumferential and radial static thermal 

gradients over the isothermal gauge were within 15°C, 5°C and 5°C. Thermocouples were not 

spot-welded on the specimen surface to avoid possible early crack initiation; a flattened K-type 

thermocouple was half wound around the specimen in centerline. Two types of fatigue tests were 

performed, respectively in reversed total strain or total stress controlled amplitude conditions: 

 

– Test type one. Total strain amplitude was applied as a triangular symmetrical  

waveform (R= -1) and varied according to the following sequence: ±0.6%, 

±0.7%, ±0.8%, ±0.9%, and ±0.7%, whereas frequency was kept constant at 1 

Hz. All tests were run up to failure and the number of cycles was recorded (Nf). 

 

– Test type two. Total strain or stress amplitude was applied as a trapezoidal  

waveform with different stress ratios.  All tests were initially run with a strain 

rate of 5·10
-3

s
-1

 or a stress rate of 700 MPa/s. Further details about test 

conditions will be reported in the next sections. 

 

Metallography 

 

Fracture surfaces were investigated using a scanning electron microscope (SEM). The fatigued 

microstructure was observed in longitudinal cross-sections of the calibrated gauge length. An 

electrolytic etching at 2.5 V potential in a bath containing 10 ml H2SO4 in 100 ml of water was 

used to reveal microstructural details. 
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Results 

Low Cycle Fatigue 

 

Low cycle fatigue is defined as damage occurring after a limited number of cycles, typically 

lower than 10,000, as consequence of high stresses resulting in significant plastic strain at each 

cycle. This type of fatigue must be considered when designing many industrial components, 

especially when, because of geometrical singularities for instance, high stress can concentrate in 

specific locations. In order to better understand the fatigue behaviour of Inconel 718 at 550°C, a 

series of total strain controlled tests was performed. The basic information on the cyclic stress-

strain behaviour was provided in the form of the hysteresis loops, where the plastic strain range, 

∆εp, can be determined as maximum loop width.  

The most common mode to exploit the LCF test results is to plot the plastic strain range at half 

life ∆εpl against the fatigue life (N). This type of relation is known as the Manson–Coffin relation 

written [4]: 

 

where: 

• ∆εp /2 is the plastic strain amplitude; 

• εf' is an empirical constant known as the fatigue ductility coefficient, the failure strain for 

a single reversal; 

• 2N is the number of reversals to failure (N cycles); 

• c is an empirical constant known as the fatigue ductility exponent, commonly ranging 

from -0.5 to -0.7 for metals. 

Figure 3 shows the Manson-Coffin relation relative to “Type one” tests. The slope of the straight 

line, in a bi-logarithmic plot,  is equal to –0.58, in good agreement with the previous description 

[5]. 

 

Figure 3. Dependence of fatigue life of Inconel 718 on plastic strain amplitude (∆εp) at 550°C. 
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Mechanical Stress-Strain Response 

During fatigue loading, particular transient cyclic phenomenon can occur: depending on the 

initial state, material can show either full stability, softening or hardening. At 550°C, Inconel 

exhibited a sharp softening from the very first cycles as shown in Figure 4, showing the strong 

decrease of the cyclic tensile stress with the number of cycles for various total strains.   

 

Figure 4. Evolution of the cyclic tensile stress with the number of cycles at 550°C as a function of the total 

strain amplitude. 

Based on the cyclic stress curves, three stages may be defined: 

• Preliminary softening stage: a severe decrease of the stress occurred during the first 25 

cycles, associated to a significant enhancement of the plastic strain amplitude. 

• Pseudo-stabilised stage: the plastic strain and stress amplitudes were approximately 

constant while the material is still continuously deformed along the hysteresis loop. This 

region of cyclic saturation extended over the major part of the fatigue life.  

• Macro-cracking stage: the drop in tensile stress was directly related to the quick  

propagation of macro-cracks within the monitored gauge length. 

Inconel 718 is primarily strengthened by the metastable γ” phase precipitates (with dimensions 

about 30 nm in diameter and 5 nm in thickness). Pineau and Clavel [6] have reported that the 

deformation is mainly due to the propagation of planar bands: under the application of a cyclic 

stress, the γ” precipitates, present in the bands, are continuously sheared by dislocations. As 

shown by Xiao [7], the process is repeated at each cycle and the size of γ” particles is reduced in 

such extent that they offer very little or no resistance to the dislocations movement. The stress 

required to shear the smallest particles is reduced, resulting a continuous softening of the alloy 

and an increase of the strain rate.  
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Effect of wave shape on mechanical fatigue 

In industry, materials are usually loaded in complex fatigue conditions including variable 

holding time under stress/strain, cycle frequency, stress/strain ratio resulting in a wide range of 

loading wave shape. The impact of those parameters on the materials behaviour is still subject to 

controversy. Ghonem [8] has studied their influence on the crack propagation; the aim of this 

paper is to analyse the individual effect of each one on the fatigue life behaviour of Inconel 718.  

Effect of holding-time  

 

 
Figure 5. Effect of holding time on fatigue life of Inconel 718 at 550°C. 

 

Although the effect of the holding time is well defined for fatigue crack propagation, further 

work is needed to elucidate the mechanisms by which the application of the holding time 

influences the fatigue life performances. The introduction of holding periods to a low cycle 

fatigue test at high temperature can be considered as a frequency-related problem, which requires 

one to investigate the interaction between fatigue and creep, using trapezoidal waveforms. They 

are defined by the loading times, in seconds, at maximal and minimal strain. For example, 150-

20 indicates a wave-form with 150 s at maximal strain and 20 s at minimal strain. All tests were 

carried out in total strain controlled mode with an R ratio equal to –1 and a strain rate of 5·10
-3

s
-1

. 

The time spent at minimal compression strain was 20 sec in order to analyse the influence of the 

holding time in tensile conditions. Figure 5 compares the results obtained by the application of 

three different wave-forms to the preliminary data obtained with a triangular signal. Holding the 

material at load results in a significant reduction of the number of cycles to failure. Note that 

extending the holding time does not decrease further the number of cycle to fracture : all data can 

be satisfactorily fit, on the Manson-Coffin diagram, along a more or less straight curve below the 

straight line of 1 Hz tests.  

 

Figure 6 shows the evolution of the plastic strain amplitude at half life as a function of the total 

strain. The holding time increased the plastic strain amplitude due to the visco-plastic effects at 

550°C. A possible explanation can be derived considering the holding time effects as a time 

dependent problem. Indeed, the stress relaxation, occurring at cycle N, while holding at constant 

strain, resulted in a decrease of the material yield strength leading to an increase of the plastic 

898



strain at cycle N+1. This instantaneous process, operating at each cycle, was characterized by a 

stress drop between 50 and 80 MPa in the hysteresis loops, and produced a global effect that can 

be noticed by an increase of the plastic strain at half life. 

 
                                     (a)                                                                                            (b) 

Figure 6. Schematic representation of the adopted wave shape (Fig.a) and relationship between the total 

strain and the plastic strain for LCF test at 550°C under triangular signals at 1 Hz and trapezoidal 

waveforms (45 s-150 s-300 s holding time) (Fig.b). 

 

Effects of the loading ratio 

 

The effect of the loading ratio on fatigue life was investigated using stress controlled wave forms 

with a 150 s holding time at maximal stress (σMax) and 20 s at minimal stress (σmin). Three levels 

of σMax were tested of 800, 1000 and 1100 MPa, while σmin varied between –400 and –900 MPa.    

In the literature, fatigue data are often obtained in conditions of fully reversed stress cycles, 

σm=0. However, in engineering practice loading usually consists of an alternating stress and a 

well established mean stress. To take into account these aspects, all fatigue tests may be 

modelled as a function of the load ratio:  

 

R= σmin/ σMax 

 

In Figure 7a, fatigue life is plotted against the load ratio, with a particular focus on the maximal 

stress. For a given σMax, fatigue life increased as the stress ratio or mean stress decreased at 

constant stress rate (700 MPa/s). Venkataraman and Nicholas have studied the effect of the load 

ratio on the fatigue crack growth rate (FCGR). They indicated that in cycle dependent condition, 

the FCGR increases with a decrease in R [9]. This is a first indication on how R influences the 

material behavior. However, considering the total life as a result of two contributions i.e., the 

crack initiation and the crack propagation, a higher negative load ratio would involve an 

important compressive stress in the cycle which increases the amplitude of the hysteresis and 

enhances the plastic strain (∆εp). This mechanism tends to accelerate the crack initiation. The 

equation derived by Tanaka and Mura, particularly suitable for crack initiation in Stage I, 

establishes this dependence [10]. 
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Where AstadeI is a constant, d is the grain size and ∆εp the amplitude of the plastic strain. 

 

It can be concluded that R has a direct influence on both the crack initiation and the crack 

propagation. Figure 7b reports the Manson-Coffin relationship expressed for each maximal 

stress. The fatigue life is strongly influenced by the peak stress. At a constant value of plastic 

strain, increasing σMax decreases fatigue life.  

 
(a)                                                                                             (b) 

Figure 7. Fatigue life of  Inconel 718 as a function of the load ratio R  (Fig.a) and the plastic strain (Fig.b) 

under stress controlled tests at 550°C. 

 

For non-symmetrical stress controlled tests, ratcheting clearly occurred (Fig.8). This effect 

resulted from the accumulation of plastic strain and was illustrated by a continuous shift of the 

hysteresis loops towards the maximal total strains.  Ratcheting is considered a damaging 

mechanism prone to produce not only detrimental high deformations but also fatigue damage in 

the material, thus limiting fatigue life.  These effects are particularly significant for R in the 

range –0.9 / -0.4. 

 

 
Figure 8. Ratcheting effects in Inconel 718 under stress controlled fatigue tests at 550°C. 
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Effects of strain rate 

To study the effect of strain rate on the LCF behaviour, two different strain rates (5x10
-2

 s
-1 

and 

5x10
-3

 s
-1

) were tested. A total strain controlled 150 s/20 s trapezoidal signal was used with 

different strain amplitudes. The test results are detailed in Table 2, showing that a higher strain 

rate corresponds to a longer fatigue life. 

 

 

Strain rate [s
-1

] Total Applied Strain 

∆εTot[%] 

Number of cycles to 

failure (Nf) 

Plastic strain at half life 

∆εp[%] 

5x10
-3

 3.0 127 1.97 

 2.4 254 1.42 

 2.0 467 1.16 

5x10
-2

 3.0 205 1.47 

 2.4 381 1.12 

 2.0 753 0.88 
Table 2 

 

Results in Table 2 show that the amplitude of the hysteresis loop, indicated by the plastic strain 

at half life, was reduced when the strain rate increases. Unsurprisingly, this macroscopic 

mechanical effect has been associated with a microstructure evolution. Kirman and Warrington 

[11] have reported that the mechanisms of deformation in Inconel 718 induce the formation of 

stacking faults within the strengthening precipitates (γ”). Those faults locally reproduce the 

crystallographic sequence of the δ phase.  

 

Clavel and Pineau [12] have proposed a post deformation heat treatment, including a 80 hours 

holding at 770°C, prone to enhance the size of the δ phase nuclei. These precipitates, localised 

along the slip lines, allow a better observation of the plastic strains less than about 1%. 

In Fig. 9 the effects of the post deformation treatment can be appreciated.  The γ” => δ 

transformation was utilised to compare the different effects of strain rate. The micrograph in 

Figure 9a shows the deformation path relative to a slow strain rate. The grains are delineated by a 

pronounced presence of δ phase which indicates the occurrence of two activated slip planes. 

Several slip lines are observed. They are specifically confined within the grains showing an 

important amount of plastic strain. Fig. 9(b) detailed the deformed microstructure observed for 

higher strain rate. In this case, the density of slip lines drastically decreases as a consequence of a 

reduced amount of plasticity. As a conclusion, it can be claimed that a higher strain rate increases 

the fatigue life of Inconel 718 at 550°C, as a result of a limitation of the plastic strain produced 

during the mechanical cycle.  
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(a)        (b) 

 

Fig 9. Comparison of the plastic zones observed under 150s/20s (1.5% Total applied strain) trapezoidal load 

at different strain rates: 5x10
-3 

s
-1

 (a) and 5x10
-2 

s
-1

 (b) 

 

Fractography 

  

A detailed examination of the fracture surfaces of the fatigued samples was conducted in order to 

investigate the different damage stages, that is the crack initiation, the crack propagation and the 

final catastrophic fracture. Crack initiation was investigated through an accurate observation of 

the longitudinal cross-sections of each samples. Fig.10 shows the case of a sample loaded using a 

triangular signal with a strain amplitude of 1.5%. This is a common Stage I initiation site. Pineau 

[5] showed that this mechanism is closely related to the formation of intense deformation bands 

formed by twinning which look like the so-called slip-band extrusions. The number of initiation 

sites was directly proportional to the amplitude of the total strain. Clavel [13] showed that the 

distance between the deformation bands is strongly dependent on the plasticity rate associated to 

each cycle. 

 
Figure 10. Typical transgranular propagation of a secondary crack under LCF test at 550°C   

 

 

The crack propagation is shown in Figure 11, where fatigue striations are clearly revealed on the 

fracture surface. Fig 11(a) and (b) correspond to the rupture of specimens respectively loaded 

using a triangular signal and a 150s/20 s trapezoidal wave-form. In both conditions, crack 
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propagation was predominantly transgranular. Spacing of fatigue striations increased as the strain 

ratio increased.  

 

   
 

Figure 11. Scanning electron micrographs of fracture surfaces after LCF tests at 550°C: triangular signal at 

1Hz (a) and trapezoidal 150s/20s waveform (b). 

 

The lack of intergranular propagation associated with the trapezoidal wave form may be 

explained in two different ways: 

 

1. The test temperature (550°C) was not high enough to provoke strong environmental 

effects. Even if the equivalent frequency relative to the cycle belongs to a time-dependent 

domain, the alloy was not sensitive to an oxidation-assisted crack propagation. 

 

2. Garat [3] has shown the occurrence of a particular interaction between the Portevin-Le 

Chatelier (PLC) effects and the inhibition of the intergranular crack propagation. As a 

matter of fact, the crack initiation sites and the nucleation zones of strain serrations are 

located in the same regions of the polycrystal. Strain rate becomes a discriminating factor 

for the activation of the PLC mechanism. At 550°C, two regimes are proposed by the 

author: at very low strain rate (lower than 3x10
-4

 s
-1

) the PLC effects are not activated and 

the fatigue failure is intergranular, while at high strain rate (higher than 3x10
-4

 s
-1

)
, 
strain 

jumps occur and the failure mode is fully transgranular. In our investigation we 

considered two strain rates which belong to the second regime and the occurrence of the 

PLC effect is shown on the stress-strain curve previously reported in section 1. These 

results show how the parameters characteristic of the loading cycles, namely the 

stress/strain rate and the temperature, may be optimized in order to limit the 

environmental effects and retain high mechanical response of the material. 

 

 

Conclusions 

 

The effect of different mechanical parameters on the fatigue life behaviour of Inconel 718 was 

investigated in details. 

The following conclusions can be derived: 

 

• The fatigue life behaviour of Inconel 718 was investigated at high temperature (550°C). 

The relationship between plastic strain and fatigue life was modelled using the so-called 
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Manson-Coffin relation. A preliminary campaign of fatigue tests was carried out at a 

frequency of 1 Hz in order to obtain reference data. 

• Fatigue loading generates a particular transient-cyclic process: the alloy showed a clear 

softening behaviour as soon as the very first cycles were completed, resulting in a 

decrease of the cyclic tensile stress with the number of cycles. 

• The application of a holding time at maximal and minimal stresses provokes an increase 

of the plastic strain amplitude at half life, reducing the fatigue life of the material.  Three 

different wave forms were employed (45 s, 150 s and 300 s): the increase of the holding 

time at maximal strain does not further decrease the fatigue life. 

• The influence of load ratio was investigated using stress controlled cycles. Fatigue life 

increases as the stress ratio or the mean stress under constant stress rate (700 MPa/s) 

decreases. 

• At 550°C low cycle fatigue behaviour is strongly influenced by strain rate. It was shown 

that a higher strain rate may correspond to a longer fatigue life. 

• No indications of intergranular failure were observed, even though specimens were 

loaded using a trapezoidal signal. This result confirms that the service temperature of 

550°C was not high enough to provoke an oxidation-assisted crack propagation. 
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