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Abstract 

 

In this paper, a series of hot compression tests were carried out under different hot 

deformation parameters, covering the temperature range of 1000ºC to 1170ºC, strain rate 

range of 0.01s
-1

 to 1s
-1

 and compression reduction of 30%, 50%, and 70%. After that, all 

specimens were heat treated under the standard heat treatment schedule of GH720Li to 

investigate its hot deformation characteristics, especially the grain growth behaviors. The 

further OM and SEM observations were adopted to investigate the interaction mechanism 

of the primary γ′ distribution and grain growth for GH720Li alloy. The results show that 

for GH720Li alloy, when hot deformed below γ′ solvus, the banded or bi-model structure 

always occurs; while hot deformed near or over γ′ solvus, the uniform grain size 

distribution can be obtained. Further microstructure analysis shows that the bi-model or 

banded grain size distribution in GH720Li alloy is mainly due to the nonuniform 

re-dissolving of primary γ′ during heating process; while the uniformity of primary γ′ 

phase is determined by the uniformity of elements in this alloy. In other word, the 

homogenizing process for ingot is the key reason for later grain size control. 

 

Introduction 

 

GH720Li (UDIMET 720Li) is a high strength nickel-based superalloy being 

considered for applications for modern gas turbines and aero-engines. The chemical 

composition of this alloy is related to that of GH720 (UDIMET 720) from which it is 

derived, but differs from it with respect to the chromium, carbon and boron levels. Till 

now, a lot of studies [1-6] have been done for GH720Li alloy including the solutioning 

and precipitating of γ prime phase, the ingot to billet conversion process control, the heat 

treatment schedule optimizing, the mechanical behavior under service conditions, etc. 

However, the microstructure of GH720Li consists of primary, secondary and tertiary γ′ 

due to its special heat treatment schedule. Primary γ′ lies at the γ-grain boundaries and 
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prevents γ-grain growth by the action of Zener pinning. Obviously, when hot deformation 

is conducted below the γ′ solvus, the characteristics of primary γ′ may affect the 

microstructure evolution even the mechanical properties of GH720Li alloy to somewhat 

extent. 

 

In this paper, a series of hot compression tests were carried out under different hot 

deformation parameters, covering the temperature range of 1000ºC to 1170ºC, strain rate 

range of 0.01s
-1

 to 1s
-1

 and compression reduction of 30%, 50%, and 70%. After that, all 

specimens were heat treated under the standard heat treatment schedule of GH720Li to 

investigate its hot deformation characteristics, especially the grain growth behaviors. 

Further OM and SEM observations were adopted to investigate the interaction 

mechanism of the primary γ′ distribution and grain growth for GH720Li alloy based on 

the physical metallurgy theory, which may give great help to industrial grain size control 

of this alloy. 

 

Experimental Procedures 

 

The tested materials were cut from the billet bar of 90 mm in diameter manufactured 

by Northeastern Special Metals Co., China. The billet bar was hot forged from an original 

ingot of 180 mm in diameter melted by VIM and VAR processes and homogenenizing at 

1190°C for 24 hours. The chemical composition (wt,%)were as follows: C, 0.01; Cr,16; 

Co, 15; Mo, 3; W, 1.25; Ti, 5.16; Al, 2.64; Mn, 0.02; Si, 0.04; Cu, 0.01; B, 0.015; Zr, 

0.035; Fe, 0.11; S, 0.001; P,0.005 and Ni bal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The billet material was cut to specimens of 8 mm in diameter and 12 mm in height. 

Then all the specimens were heated to different temperatures and deformed at different 
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Fig. 1 heating scheme of experiments 
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strain rate and different reductions by using hot working simulator GLEEBLE 1500D. 

The heating scheme (See Fig.1) and the hot working parameters are as follows: The 

deformation temperatures are from 1000 to 1170°C with the increase interval 30°; the 

deformation strain rate and compression reduction are 0.01 s
-1

, 0.1 s
-1

, 1 s
-1 

and 30%, 50%, 

70%, respectively. 

 

After doing that, the as-forged specimens were all heat treated according to the 

following processing: 1110ºC /4hrs, OC+650°/24hrs, AC+760°/16hrs, AC. Then all 

specimens were electro-polished and electro-etching. Finally, the OM and SEM 

equipments were used to evaluate the microstructure evolution, especially the grain size 

distribution. 

 

Additionally, in order to study the solutioning and precipitating rate of γ′ phase in 

GH720Li alloy, a portion of solution annealing tests were also conducted. The annealing 

temperatures are from 1150 to 1200° for 30 min with water cooling. 

 

Fig.2 Hot deformation behaviors under different conditions 

(a)0.01s－1
 (b) 0.1s－1

 (c)1s－1
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Results 

 

Hot deformation characteristics of GH720Li alloy  

The hot deformation characteristics of GH720Li alloy were illustrated in Fig.2. From 

Fig2a, 2b, and 2c, we can obtain that although GH720Li is a typical hard to deformation 

superalloy, its hot working behaviors are the same as other Ni-base superalloys. The 

stress-strain curves are typical DRX type under almost all conditions. There are three 

stages in its stress-strain curves: during the initial stage, work hardening effect induced 

by dislocation pile-up is the primary reason, the flow stress increases quickly with the 

strain increasing; when softening effect induced by DRX can exceed the working harden 

effect, the flow stress curves get to the peak; finally, the stable stage occurs when the two 

different interaction mechanism get to a balance.  

 

Microstructure evolution under different forging conditions 

1)The recrystallization characteristics under the lower temperatures (1000-1100ºC) 

Fig.3 shows that when GH720Li alloy was hot forged at relative lower temperature of 

1000°, a bi-model grain size distribution occurs. In other word, A new banded structure 

including the coarse grain region and the fine grain region forms. the average grain size 

of coarse zone is about ten times than that in fine grain zone. Also, the shape and 

distribution of the banded structure correspond with the flowline of the cylindrical 

samples. When deformation temperature increases, the banded structure is somewhat 

decreasing. This phenomenon can be observed from Fig. 4. In Fig. 4 a, 4c and 4e, the 

coarse grain zone decreases when forged under temperature of 1050° at all compress 

reductions; while in fine grain region, all is the equiaxed fine grain. In general, when 

forged at lower temperature, the banded structure always exists in GH720Li alloy. 

 

Fig.3 Grain size distribution of GH720Li under the strain rate of 1s
-1

(1000°C) at different 

reductions (a), (b) 30%; (c) 50%; (d) 70% 
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Fig.4 Grain size distribution of GH720Li alloy under different conditions (strain rate 

0.1s
-1

, temperature 1050°C) (a), (b) 30%; (c), (d) 50%; (e), (f) 70% 
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Fig.5 Grain size distribution of GH720Li alloy under different conditions (strain rate 

0.1s
-1

, temperature 1130°C) (a), (b) 30%; (c), (d) 50% 

 

2) The recrystallization characteristics under the higher temperatures (1130-1170ºC) 

 

Figs5-7 is grain size distributions for GH720Li alloy under the forging temperature of 

1130°, 1150° and 1170°, respectively. The experimental results show that when 

deformation temperature is up to the solutioning point of its strengthening phase γ＇, 

about 1160°, the grain size is getting uniform than that in the lower temperature range. 

Especially when hot working temperature is over the phase transformation point, the 

grain size is still uniform but becoming somewhat larger. The main reason is due to theγ＇
phase solutioning with the temperature increasing in this alloy, resulting in the poor 

action of Zener pinning at grain boundary. In other word, the migration of grain boundary 

and the dynamic recrystallization are both getting easier in the higher hot working 

temperature than that in the lower temperature. 
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Fig.6 Grain size distribution of GH720Li alloy under different conditions 

 (Strain rate 0.1s
-1

, temperature 1150°C, and reduction 70%) 

 

Fig.7 Grain size distribution of GH720Li alloy under different conditions (strain rate 

0.1s
-1

, temperature 1170ºC) (a) 50 %;(b) 70% 

 

Discussions 

 

Effect of the hot working parameters on the banded structure 

The above mentioned OM observations show that when hot working is carried at the 

temperature below 1100ºC (Fig.8a)，the abnormal grain growth or the bi-model grain size 

distribution （i.e. the coarse grain region and the fine grain region）always occurs; when 

forging temperature is up to1170ºC (Fig.8b) or above 1150ºC, the uniform grain size 

distribution is obtained. In other traditional wrought superalloy [7,9], such as IN 718, 

WASPALOY, etc. the banded structure seldom occurs during their hot working processes. 

(a) (b) 
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However, the abnormal grain growth is often met in their engineering practice. Many 

researchers did lots of works on the dynamics of DRX in hot deformation process for 

steels, titanium alloys, superalloys, etc.[7,8,9], but few have done on the abnormal grain 

growth. Benson[10] etc. ever put forward a mathematical model base on Hillet, Hunderi 

and Ryum to describe the effect of initial grain size distribution on abnormal grain growth 

in Rene 88DT alloy, but its application limits to the so-called critical grain growth which 

mainly occurs in the very small strain (lower than 10%) or the relative large strain 

(near70-80%) in engineering. For GH720Li alloy, the bi-model grain distribution may 

occur under the different reductions (30%, 50%, 70%) at the lower forging temperatures. 

This phenomenon is perhaps related to the phase transformation nature of GH720Li but 

was not the same as Benson studied abnormal grain growth in Rene 88DT. 

 

Based on the Thermo-calc software and its Ni-base databank, the pseudo-phase 

diagram for GH720Li alloy is calculated (see Fig.9) thermodynamically. Fig9. shows that, 

there is a portion of γ＇phase when hot formed lower than its solutioning point, about 

1160°; although few portion of M23C6, MB2, M3B2, sigma phase and mu phase would 

precipitate under the thermodynamically equilibrium state, they may affect the grain size 

distribution to little extent. The main factor may be the γ＇phase distribution because there 

are three types of γ＇phase under standard heat treatment state: primary, secondary and 

tertiary γ′ (ref. Fig.10); and there still exists portion of primary γ＇phase at the traditional 

forging temperature. 

 

 

(a) (b) 

Fig. 8 OM morphology of GH720Li under different hot working parameters of  

(a) 1000℃ and (b) 1170℃ at 30% compression reduction 
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Fig. 9 Pseudo-phase diagram of GH720Li alloy (b) local of (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 The typical γ＇phase in GH720Li alloy 

 

During hot working process, such as ingot to billet conversion, forging, rolling etc., the 

γ＇phase solutioning point is a very important parameter. Traditionally, alloys can be hot 

deformed in their single phase window or austenite region in order to get the best 

plasticity. With the development of hot working processes, forging or rolling based on 

microstructure control is becoming more important in the recent years. The above 

investigations show that if hot forged near or over the γ′ solvus, there is a uniform grain 

size distribution in GH720Li components, or the vise versa. However, the higher 

deformation temperature may cause the coarse grain, which will affect the fatigue 

property to a great extent. Thus, it is essential to investigate the forming mechanism of 

the banded structure for GH720Li alloy. 

tertiary γ′ 

secondary γ′ 

Primary γ′ 
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The forming mechanism of the banded structure for GH720Li alloy 

 

Fig.11 is the further high resolution SEM analysis for the above-mentioned bi-model 

grain growth phenomenon. In the fine grain region, there exists primary, secondary and 

tertiary γ′, and primary γ′ lies on the fine grain boundary; while in the coarse grain region, 

there only exists secondary γ′. The different primary γ′ distribution induces the banded 

contrast in different region, resulting in the banded structure in forgings.  

According to the above analysis, the bi-model or banded grain size distribution always 

occurs at the forging temperature below the γ′ solvus of GH720Li. This phenomenon is 

mainly due to the nonuniform re-dissolving of primary γ′ during heating process. Thus, 

control the uniformity of primary γ′ phase is essential to control the uniformity of grain 

size of GH720Li alloy.  

 

Fig. 11 the primary γ′ distribution of GH720Li in different region under hot working 

parameters of 1000°, 30% reduction (a) the banded structure; (b) the coarse grain region; 

(c) the fine grain region 

Coarse grain region 

 
(a) (b) 

(c) 

fine grain region 
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Fig. 12 is the γ′ phase distribution under 1200ºC and 30min solution annealing and 

water cooling. The result indicates that even water cooling can not prohibits γ′ phase 

precipitating in GH720Li (U720Li) during its cooling process, which is in agreement 

with the report by Jian Mao, Kehn Min Chang[6] etc. This reveals two parts of important 

information related to hot working process for GH720Li alloy. On one hand, γ′ phase in 

GH720Li alloy nucleates and grows quickly; on the other hand, if hot worked below γ′ 

solvus, there are several metallurgical mechanisms co-exist and interact one another, such 

as the plastic forming, the dynamic recrystallization and the γ′ phase precipitating. And 

the primary γ′ phase pinning at the grain boundary may dominate the dynamic 

recrystallization process, affecting the grain size distribution to a great extent. 

 

In general, the bi-model or banded grain size distribution in GH720Li alloy is mainly 

due to the nonuniform re-dissolving of primary γ′ during heating process; and the 

uniformity of primary γ′ phase is mainly determined by the distribution of elements in γ′ 

phase such as Al, Ti in this alloy. As we all known, the distribution of elements is closely 

related to the homogenizing process for ingot of each material. thus, the homogenizing 

schedule for GH720Li ingot is the main reason for later grain size control such as ingot to 

billet conversion process, disk forging process, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

 

� For GH720Li alloy, when hot deformed below γ′ solvus, the banded or bi-model 

structure always occurs; while hot deformed near or over γ′ solvus, the uniform grain 

size distribution can be obtained. 

� The bi-model or banded grain size distribution in GH720Li alloy is mainly due to the 

Fig12. γ′ phase distribution under 1200°,30min 

 solution annealing and water cooling 
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nonuniform re-dissolving of primary γ′ during heating process; While the uniformity 

of primary γ′ phase is determined by the uniformity of elements in this alloy. Thus, 

the homogenizing process for ingot is the main reason for later grain size control. 
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