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Abstract 

 

Statistical data modelling techniques are used to predict and optimise the tensile properties of a 

2-stage closed-die Waspaloy forging using real industrial data. This data includes chemical 

composition, inner and outer region billet grain size, γ’ solvus temperature, furnace set 

temperature and preform and final form furnace durations. These parameters are used to model 

the behaviour of the ultimate tensile strength (UTS), yield strength (YS), elongation (E) and the 

reduction of area (R of A), at 8 varied locations in the forging via linear and non-linear 

regression. This has been done to determine the sensitivity of variations in process route and 

alloy chemistry, in order to optimise tensile properties.  

 

Introduction 

 

A typical process route for critical section Waspaloy forgings involves a 2 stage forging 

operation, using 2 separate dies with perform and final heat treatments, followed by air cooling. 

They then undergo 3 heat treatment stages: a solution heat treatment, a stabilisation and an 

ageing process. Mechanical property assessment is then done on a number of sacrificial forgings 

within the batch at different locations in order to determine if the products reach customer 

specification and have a high degree of consistency. 

 

The aim of this work is to determine the effect of process route variations using various 

statistical data modelling analyses. This is based on the notion that the majority of the forging 

process route is constant and the only means of influencing tensile properties would be via the 

obtained parameters.  These relationships may then be reverse engineered to provide optimum 

process routes that provide more reliable products thus eliminating time and money spent on 

non-conformance investigations. As such the work has two objectives:  

 

1. Verify the significance of altering each input independently of other factors, which is not 

always applicable industrially. 

 

2. Highlight the variations in modelling accuracies in the modelling of UTS, YS, E and R of A 

and how variations in process route to optimise one property have an influence on the other 

properties. 
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Experimental 

 

This study uses real industrial data obtained from a single part with 8 test locations to find and 

quantify correlations between the billet characteristics/process route and tensile properties. This 

resulted in over 2660 data points for modelling. The 20 inputs and 4 outputs measured for the 

part were the following: 
PROCESS INPUTS 

Major Compositional Elements (taking Ni as balanced) 

Al, Ti, C, Cr, Cu, Co, S, P, B, Fe, Zr, Mn, Si, Mo (all measured in Wt. % composition) 

Billet Characteristics 

Inner region Grain size (ASTM G), Outer region grain size (ASTM G), Gamma Prime Solvus Temperature (°F) 

Deformation Heat Treatment Variables 

Furnace Set Temperature (°C), Preform Furnace Duration (min), Final Form Furnace Duration (min) 

PROCESS OUTPUTS 

Tensile Properties 
UTS (MPa), Yield Strength/YS (MPa). Elongation/E (%), Reduction of Area/R of A (%) 

 

Table I. shows the range in which the data was obtained. 

 
Table I: Maximum and minimum ranges of all Inputs/Outputs used in this investigation. 

Data 

IN
P

U
T

S
 

C Ti P Zr Mn Co Al Cu Si Fe B Cr Mo 

Max 0.037 3.12 0.004 0.071 0.06 13.46 1.35 0.02 0.10 1.50 0.0055 19.40 4.14 

Min 0.031 3.02 0.001 0.060 0.01 13.20 1.29 0.01 0.03 0.55 0.0041 18.88 3.86 

Data S C. 

GS 

E. 

GS 

γ’  S F. S. 

T. 

P. D F. 

D 

O
U

T
 

P
U

T
 

UTS YS E R of A 

Max 0.0005 7.5 12.0 1919.5 1028 276 178 1473.6 1082.3 28.43 44.96 

Min 0.0001 3.5 5.5 1905.0 1016 108 61 1258.7 842.0 16.30 19.00 

 

1
st
 stage data analysis was to normalise all the data (between 0 and 1) with regards to their 

individual data ranges. This made sure that there was no scalar bias towards the larger valued 

inputs and allowed models for various process inputs and outputs to be directly comparable.  

 

The data was then randomised and separated into 3 groups, allocated as the training, validation 

and testing data sets, respectively. The training data set contained the majority of the data points 

(70%) and was used to train the various models’ behaviours and assign numerical values to 

various coefficients. The validation data (8%) set was used to make sure the regression/learning 

technique was not ‘overtrained’ and unable to generalise. The validation set is designed to 

automatically stop optimisation once its mean squared error (MSE) value starts to rise during the 

iterative training operation. The testing data (22%) was then used to determine the effectiveness 

of the models, by comparing its predictions with virgin data.  

 

The evaluation of the various modelling techniques was analysed via calculating the MSE 

between the predicted results and the actual results across the testing data sets. The effects of 

changing process input values were determined via an individual input sensitivity analysis. All 

inputs were set to their mean values while a single input was varied from normalised values of 0 

to 1 along its range. The simulated output was calculated via the corresponding model and 

therefore the results obtained were solely influenced by the variation of a single parameter. It 

provides a unique opportunity to localise the impact of a single input without changing the 
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others. This technique is useful as similar investigations are not practical or are too 

expensive/time consuming to obtain via physical experimentation.  

 

The modelling was performed using the MATLAB software. The type of function codes being 

used in this investigation to analyse the process behaviour are listed in Table II. The modes of 

analysis used and their relevant MATLAB functions are also listed in the Table II. The 

modelling architecture used for each modelling technique is described in Table III. 

 

Table II: A list of various MATLAB functions used in various modelling techniques implemented. 

Modelling Technique Type of Model MATLAB Function Test Location Batch 

Multiple Linear 

Regression (MLR) 

Multivariate Linear Regression Regress Separated  Test Location 

Analysis 

Multiple Quadratic 

Regression (MQR) 

Multivariate Linear Regression Regsats Separated Test Location 

Analysis 

Neural Network Multivariate Non-Linear Regression, 

Feed Forward Back Propagation 

Newff, NET & Sim Separated Test Location 

Analysis 

Ensemble Neural 

Network 

Multivariate Non- Linear Regression, 

Feed Forward Back Propagation 

Newff, NET & Sim Separate Test location 

Analysis 

Randomised Ensemble 

Neural Network 

Multivariate Non- Linear Regression, 

Feed Forward Back Propagation 

Newff, NET & Sim Combined Test Location 

Analysis 

Xvalidation Ensemble 

Neural Network 

Multivariate Non- Linear Regression, 

Feed Forward Back Propagation 

Newff, NET & Sim Combined Test Location 

Analysis 

 

Table III: A list of various model designs used in various modelling techniques implemented. 

Modelling  

Technique 

No of Models No. of data 

points per Model 

Training 

Algorithm 

Network 

Topography 

Multiple Linear 

 Regression (MLR) 

1 per test location 

per tensile property (32) 

333 (mean) - - 

Multiple Quadratic 

Regression (MQR) 

1 per test location 

per tensile property (32) 

333 (mean) - - 

Neural Network 1 per tensile location 

 per tensile property (32) 

333 (mean) trainrp 36-24-12-1 

Ensemble Neural 

 Network 

10 per each ensemble model 

per tensile location 

per tensile property (320) 

333 (mean) trainrp 36-24-12-1 

Randomised Ensemble 

Neural Network 

10 per each ensemble model 

per tensile property (40) 

2660 trainlm 30-15-1 

Xvalidation Ensemble 

Neural Network 

10 per each ensemble model 

per tensile property (40) 

2660  trainlm 30-15-1 

 

Detailed information on these models, modelling techniques, training algorithms and network 

topography can be found in the MATLAB specified literature [1,2]. 

 

Results 

 

A comparison of the accuracy of all the models used across all tensile properties is shown in 

Figure 1.  

 

With regards to the strength trends, there is a decrease in MSE with evolution in regression 

technique.  The combined test location methods are similar in magnitude to simpler models, even 

with a higher data set value and thus the likelihood for increased errors. However, the practical 
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recording of the measurements are more qualitative than the strength based values and to a lesser 

degrees of accuracy. Therefore the values shown may still be practically applicable. The actual 

Root Mean Squared Error (RMSE) values show an accuracy of between approximately 1.2-

3.5%, which may be suitable as an early warning sign warning during process design. 
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Figure 1: Variation in Average Testing MSE results at all test locations for each method of analysis. 

 

 

The tests results in Figure 2. show that the models are better at the predictive behaviour of the 

strength based tensile results than the ductility based results. The black and red lines represent 

the ±5% of the normalised and actual data ranges respectively. With the strength results, the 

models operate well inside this range and mostly keep their confidence limits concise. With the 

ductile traits, both the confidence ranges are of similar magnitudes and the confidence limits are 

respectively larger. The ensembled models have a greater difficulty predicting the nature of the 

ductile trends.  

 

There are three possible reasons for this behaviour: 1. there is not sufficient data provided to 

describe the behaviour of the ductile traits and some additional quality measures are required as 

process inputs; 2 the network topography is too simplistic to generalise the behaviours properly; 

and 3. there are too many unquantifiable qualitative variations that occur during 

operation/recording R of A, which have an influence but are unable to be quantified and 

therefore modelled, via these methods. 

 

Input Sensitivity Models 

 

The input sensitivity results illustrated in this paper are those obtained from the ‘combined’ 

methods with the lowest MSE. These will highlight the process route influences over one 

specific test location (Figure 3). The results are plot as normalised groups of 7 for convenience 

and the ‘test location’ variable is a constant throughout and therefore is not plot. Each set of 7 
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inputs are plot in the same column for all its tensile correlations so direct comparisons may be 

made between them.  
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Figure 2 a-d) : Diagonal Plots Predictions of testing data for best neural networks across all tensile properties. 
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Figure 3a: The influence of varying inputs across the strength based properties, taken at test location 3. 
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Figure 3b: The influence of varying inputs across the ductility based properties, taken at test location 3. 

 

The models also allow a surface plot to be created showing how interacting inputs jointly affect a 

given tensile property (Figure 4). So for example, using Figure 4, one could analyse what the 

most effective ratio of γ’ (Ni3,(Al,Ti)) additions promote the best UTS. Another use would be to 

calculate how much the final form heat treatment duration needs to be increased to compensate 

for a short preform duration operation, while keeping a satisfactory R of A. Care must also be 

taken in the analysis of such trends. Any input shown not having any impact on the tensile 

properties in this study may have one (or another purpose) in reality. It may not show up due to 

there not being enough variation in its values across the 2660 data points. 

 

  
Figure 4a-b: Surface plots showing the impact of two alternating inputs and their joint impact on a given 

tensile property. (Note, relationships have been derived from separated ensembled results, and not from 

combined test location analyses, hence they may not match with correlations shown in Figure 3. 

 

Since various models are produced using different randomised sets of data for different test 

location models or among the ensemble model batch, repeated trends may be used to assure 

process metallurgist that the models are picking out consistent behaviour. An example of a trend 

consistency analysis has been performed on the best obtained models from the combined test 

location analysis and is summarised in Table IV simply comparing one strength property against 

a ductile one. 
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Strength and Ductility Trends (YS and E) 
 

Table IV shows if the input has a positive or negative correlation with a specified tensile 

property. More complex relationships are also described across the data ranges (if applicable). 

The table also highlights how many test locations share similar responses to one another, which 

can highlight a forging’s anisotropic tendencies or be used as a further element of assurance in 

the modelling behaviour. The influence of each input has also been highlighted, so if only subtle 

variations are required, then milder influencing inputs may be altered and vice versa for drastic 

changes. 

 

Table IV: Table showing impact of various inputs on YS and E traits,  
Input Trend with YS Influence Trend with E Influence 

C Positive based on 8, keep between 0.2-1 for best 

control 

Strong Negative/Minimise Intermediate 

Ti Mild Positive based on 4, No impact based on 5, 

may maximise for the minority. Needs validation 

Mild/n/a Negative, peak at 0.6/0.7 (limit to 

0- 0.6 for best control) 

Strong 

P Positive based on 7, 3 across range, 4 over 0.5-1 Strong No impact, minor positive Mixed/weak 

Zr Positive based on 5/7, may be detrimental over 0-

0.5 for some 

Strong Negative, limit range to 0.2-

0.75/1 for best control 

Strong 

Mn Positive overall. Positive based on 7 with best 

control above 0.5, negative based on 5 up to 0.5 

(x2 relationships) 

Strong Net mild negative impact 

(unknown trend, validate) 

Mixed 

Co Negative based on 6, 0 value is best, needs 

validation 

Strong x2 relationship with net positive, 

best control from 0.35-0.5 

Mild 

Al Negative based on 8, best control between 0.3-0.7 Varied Negative based on 6 Intermediate 

Cu Negative based on 4, no impact at 2, mild 

positive at 3, minimise overall but needs 

validation 

Mixed No impact at 4, negative at 4, 

need to verify trend, potential to 

minimise 

n/a  

/ very weak 

Si Negative based on 5, keep at 0, best control over 

0.7-1 

Strong/ 

Intermediate 

Positive based on 6 Strong 

Fe Positive based on 7, keep from 0.35-1 (0.35-1 

based on 4, 0.5-1 based on 3)  

Intermediate Negative based on 8 (may be 

limited impact above 0.5) 

Strong 

B Negative based on 6 ½  Intermediate Unknown (leave and validate) n/a 

Cr Bimodal, x2 at 6, limit content to maximum of 

0.5/0.7, needs industrial validation 

Unknown Negative  based on 4/6, best 

control over 0.5-1 

Strong 

Mo Strong negative based on 3, mild positive based 

on 3, do not trust strength of negative trends, 

needs validation 

Mixed Negative based on 8 (4 are net 

negative) 

Very strong 

S Negative at 5, shift in behaviour mostly observed 

at 0.45  

Strong/ 

Intermediate 

No impact based on 4 (unknown), 

short range positive across 0.3-

0.7, needs validation 

Mild 

Inner 

G 

No impact based on 4, best results between 0.4-

0.55 at 4, leave alone or isolate ideal region, 

needs validation 

n/a No impact at 6, leave alone n/a 

Outer 

G 

Negative at 8, best control over 0.35-1  Strong Negative, based on 7, best control 

over 0.4-1 

Very Strong 

γγγγ’ 

Solvus 

Temp 

Positive based on 3, Negative based on 3, 

indecisive, compare to other network trends 

(should be positive) 

Mixed Positive based on 8, best control 

over  0-0.5 

Strong 

Fur. 

Set 

Temp 

Negative based on 8 Very  

strong 

Positive based on 6, control 

above 0.6 is weak 

Strong 

Preheat 

Dur. 

Positive based on 5, negative based on 3, 

maximise 

Mild No impact at 5, leave alone n/a 

Final 

Dur. 

Negative based on 6 neglible No impact at 5, mild positive 

at best, leave alone/optimise 

n/a 

/ mild 
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To further expand the work, an extended hybrid modelling technique may be introduced, which 

allows for the combination of empirical flow and data modelling methods. This will provide a 

knowledge-based grey box solution (with minimal extra additional inputs) that enhances the 

models ability to model the process route more accurately. 

 

Conclusions 

 

Industrial data has been used to create a number of statistical models to predict mechanical 

properties of forged Waspaloy components as a function of a multivariate data set. This has 

enabled the following: 

 

•  Optimise model design for stronger correlations between process route and forging quality 

• Determine process route influences on the quality of finished forging components. 

• Observe variations in model/predictive quality across varying process outputs  

• Identify the severity of input influences on various outputs 

• Compare the influence of multiple interacting inputs simultaneously 

• Compare the influence on multiple outputs simultaneously 

• Compare the variation in process route behaviour across multiple testing locations. 

• Influence process design to optimise products, based on cost, performance, reduction of non-

conformance, machine limitations, environmental legislation etc... 
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