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Abstract  

The microstructure and mechanical properties of fine-grained Inconel 718 ring forging were 

investigated in this paper. The results indicated that the fine-grained ring forgings can be 

obtained by forging the fine-grained Inconel 718 bars. The grain size can be as fine as ASTM 10 

and the precipitated δ phase are spherical. Heat treated at 980°C/1h/water cooling + 620°C 
/12h/air cooling, the ring forgings possessed very good mechanical properties. The impact 

toughness can be over 100J. In the fatigue test with the stress ratio -1, when the theoretical stress 

concentration factor is 1 and 2.7, the maximum stress for 10
7 

fatigue cycles is over 620 MPa and 

260 MPa, respectively. 
 

Introduction 

Inconel 718 alloy has been used world-wide in aerospace, aircraft, oil, and chemical industries, 

and also nuclear power plants because of its high strength, excellent ductility, good formability 

and weldability etc [1-3]. To meet the demands of different service conditions, the die forging 

process has been investigated intensively in the past few years. Besides two conventional forging 

processes, including forging driven by hydraulic presses or hammers, and some advanced 

forging processes, such as hot die forging, insulation die forging and isothermal forging, have 

been developed to manufacture fine grains forgings. The products of these processes have been 

applied significantly in new power units [4-6]. 

 

Inconel 718 alloy fine grain ring forgings which were used to manufacture a key part of one new 

power unit. The part should have excellent impact toughness and high cycle fatigue properties to 

meet the complicated cyclic loading seen in service. The microstructure and mechanical 

properties of fine grain ring forgings have been investigated in this paper. Impact toughness and 

high cycle fatigue properties under different stress concentrations were also studied based on the 

analysis of conventional mechanical properties. 

 

Material and experimental procedures 

Trial material was obtained from the Inconel alloy 718 bar by using radial forging machine, the 

bar was manufactured in Special steel business Unit of Baosteel. The main chemical composition 

of Inconel 718 trial material is shown in table 1. The melting process of the alloy was VIM+ESR 

(Ar protected). After homogenization the ESR ingot was forged into octagon bar (220mm) by 

hydraulic press, then the octagon bar was forged into round bar (Φ105mm) by 1300t radial 

forging machine. The average grain size of the bar is ASTM 7 and 9. 
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Table 1 Chemical composition of  Inconel 718 alloy (wt％) 

C Si Mn S P Cr Ni Mo Nb Ti Al Fe 

0.024 0.06 0.02 0.002 0.003 18.84 53.64 3.08 5.23 0.95 0.53 17.62 

 

Ring forgings were obtained from the bar stock, which has undergone a process of forge-reheat-

forge by using 3000t oil hydraulic press. At the first pass of forging process, the bar stock was 

heated to 990~1020°C, then forged into pancake and cooled by water immediately. At the second 

pass of forging, the pancake was heated to 990-1020°C again, and the heat preservation of the 

billets were by use of applied insulation. The mold was heating to 600-650°C, and the billets 

were forged into the final shape. The dimensional sketch of ring forging is shown in Figure 1. 

The heat treatment process was two step treatments consisting of solution treatment at 980°C for 

1 hour and water quenched, then reheated to age at 620°C for 12 hours, and then air cooled. 

Tensile test was conducted on MTS-810 machine; the Charpy-type U notched specimen was 

used in impact test which carried out on a JB-30 impact machine. Rotary bending fatigue test 

was conducted on an E4 fatigue machine with a 80-85Hz test frequency and stress ration of -1. 

Two kinds of samples were chosen for the fatigue test, a smooth specimen and notched specimen 

with 0.5mm notch radius, the theoretical stress concentration factor is 1 and 2.7, respectively.   

 

Fig1. A dimensional sketch of ring forging 

 

Results and discussion 

Microstructure of Billet and the Ring Forging 

 

The microstructure of Φ105mm radial forging bar is shown in Figure 2. Typical grain size at 

center and mid-radius locations of the bar are between ASTM 7 and 9, while the average grain 

size at bar surface is about ASTM 10, there were also some ASTM 2-4 coarse grains surrounded 

by ASTM 10 fine grains. In general, fine grain Φ105mm radial forging bar is beneficial in 

producing fine grain forgings. 
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(a) Center                                                 (b) R/2 

          

              (c) Near surface position                 (d) Coarse grains near surface position 

Fig.2. Grain structure of Φ105mm bars 

 

Fig.3. shows the microstructure with δ phase distribution at different positions of ring forging. It 

can be seen that δ phase could be fully spheroidized after the bars were die forged at the critical 

solution temperature of δ phase. The average grain size at different positions of ring forgings are 

estimated to be finer than ASTM 10, Mid-radius to the surface grain size are determined to be 

uniform and fine. This kind of microstructure is of great benefit for forging parts to have 

excellent ductility and high fatigue strength. 

 

  

(a) Near  inner surface position (b) Near  inner surface position 
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(c) R/2 (d) R/2 

  

(e) Near  outer surface position (f) Near outer surface position 

Fig3. The δ phase and grain microstructure of the ring forging 

 

The SEM micrograph of δ phase distribution is shown in fig.4. Fine δ phase particles have been 

observed, and they appear to be spherical in shape.  

 

 

Fig.4. The SEM image of δ phase microstructure of ring forging  

 

Results presented in literature [7] show that Inconel 718 benefits from hot die forging using die 

temperature at 900-930°C and billet temperature 990-1020°C for billet when the hot die forging 

346



 

 

technique is used to forge Inconel 718. If the billet grain size is finer than ASTM 7, then hot die 

forging under a large deformation ratio can achieve a grain size finer than ASTM 10. In our 

investigation experiment, heat insulating hot die forging technique is applied, requiring die 

temperature at 600-650°C. Fine grain forging with the grain size finer than ASTM 10 can be 

obtained by this route, which greatly reduces the requirement for high temperature capable of die 

material. This technique can reduce the production costs considerably. 

 

 Mechanical Properties of the Ring Forging 

After using the heat treatment designed for this investigation, the forging mechanical properties, 

presented in table 2, and 846-0010 heat number is the typical Inconel 718 forging data. Yield 

strength is greater than 900MPa and impact toughness can be over 100J. 

 

Table 2 Mechanical properties of tested ring forging 

Heat number 
UTS YS A Z Impact 

MPa MPa % % J 

630-0909 

Ring Forging 

1240 905 34 48 100 

1240 920 36 48 102 

630-0912 

Ring Forging 

1260 910 31 41 119 

1250 900 32 46 120 

846-0010 

Typical  Forging 

1360 1170 23 45 48 

1360 1180 22 44 50 
 

Results presented in literature [2] show that the peak precipitation temperature of δ phase for 

inconel718 alloy is about 930°C.The δ phase begins to dissolve at 980°C, completely dissolved 

at 1020°C; γ" phase begins to precipitate at 650°C, and begins to dissolve from 840 to 870°C, it 

can be dissolved completely at 950°C; γ’ phase precipitates at 600°C, and begins to dissolve at 

840°C. The precipitation of δ phase can be greatly restrained at water cooling after solution 

treatment, and the content of δ phase is lower than for standard heat treatment (720°C /8h, 

furnace cooling to 620°C by 50°C/h, and then 8h air cooling). The chemical composition of δ 

phase tested by APD-10 type X-ray diffractometer at different heat treatment presented in table 3. 

 

Table 3 Chemical composition of δ phase by different heat treatment  

Item 
Element in δ phase (wt%) Total 

(wt%) Ni Fe Cr Al Mo Nb Ti Zr 

This heat 

 treatment 
1.1481 0.0401 0.0255 0.0016 0.0229 0.4879 0.0481 0.0023 1.7765 

Standard heat 

treatment 
1.3387 0.0514 0.0276 0.0018 0.0263 0.5697 0.0573 0.0034 2.0762 

 

When the ring forging was aged at 620°C, the precipitation temperature of γ" phase is suppressed 

and the alloy was primarily strengthened by γ’ phase, the chemical composition of γ’ phase and 

γ" phase tested by APD-10 type X-ray diffractometer at different heat treatment presented in 

table 4. Therefore its strength is lower than that of standard heat treatment Inconel 718. However, 

with the reduction of strengthen, the ductility and impact toughness is improved. 

 

 

347



 

 

 

Table 4 Chemical composition of γ’ and γ" phase by different heat treatment  

Item 
Element in γ’ & γ" phases (wt%) Total 

(wt%) Ni Fe Cr Al Mo Nb Ti Zr 

This heat treatment 

(γ’ phase only) 
2.4106 0.0353 0.1306 0.0668 0.0447 0.6268 0.1588 0.0051 3.4787 

Standard heat treatment 

(γ’ phase + γ" phase) 
8.4468 0.2813 0.4750 0.2046 0.1963 2.3420 0.5530 0.0197 12.5187 

 

 

High Cycle Fatigue of Ring Forgings  

The S-N curve of as heat treated Inconel718 ring forgings (smooth and notched specimen) at 

room temperature are shown in Fig 5 and Fig 6, respectively. It can be seen from the graphs that 

rotating bending high cycle fatigue strengths of the ring forgings are 620MPa and 260MPa at 

with the stress concentration factor Kt= 1 and 2.7, respectively. The forgings exhibit a good 

resistance to high cycle fatigue. 

 
 

  
Fig5. The S-N curve of ring forging (Kt=1) Fig6. The S-N curve of ring forging (Kt=2.7) 

 

 

It is clear that fine grain structure produces a greater grain boundary area, which can reduce 

fatigue crack propagation. Therefore, the high cycle fatigue property will be improved if the 

grain size can be refined [9-10]. Some researches have commented on the influence of grain size 

on the fatigue properties, and a relation expression like Hall-Petch type formula was summarized 

from the past study: 

 
2/1

01 σσ dKg+=  

 

Where, σ-1 is fatigue strength, σ0 and Kg are material constants, d is average of grain size. In our 

investigation the average grain size of the forgings is finer than about ASTM 10. The typical 

spherical δ phase was obtained by insulation die forging at the critical dissolution temperature of 

δ phase. So the embrittlent effect of δ phase is weak because of the optimization from two 

aspects, quantity and shape of δ phase, which is benefit to improve high cycle fatigue properties. 

 

348



 

 

Conclusions  

(1) The fine-grained ring forgings can be obtained by insulation die forging from the bars, the 

grain size can be ASTM 10 or finer. Most of the δ phase is spherical and granular, and the rest is 

short rod-like δ phase. 

(2) A good balance between strength and ductility can be achieved after special designed heat 

treatment of ring forgings with a fine-grained structure which resulted in the impact toughness 

can be over 100J. 

(3) The excellence of high cycle fatigue property is demonstrated for these fine grain ring 

forgings. The rotating bending high cycle fatigue cycles limit 
710

1−
σ is 620 MPa and 260 MPa, at 

stress concentration factor of 1 and 2.7, respectively. 
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