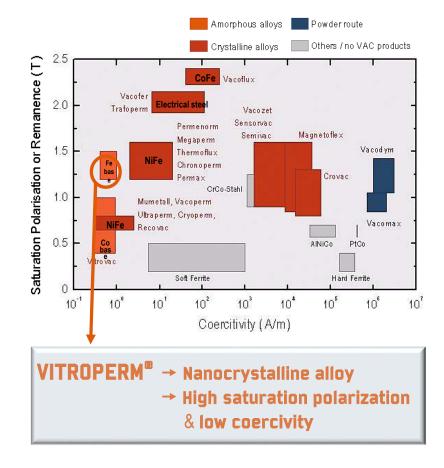


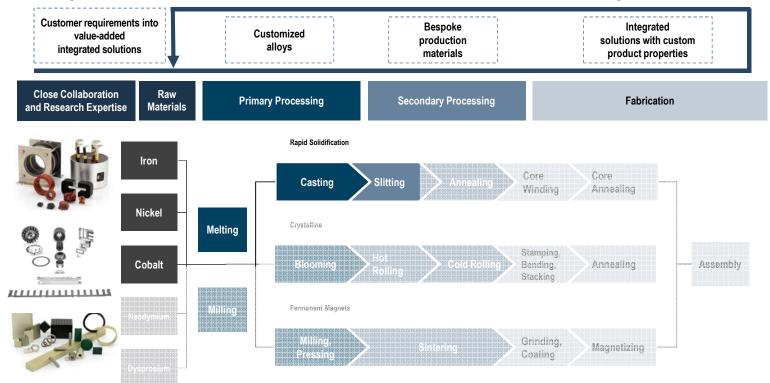
e-Mobility Applications of Nanocrystalline (NC) Materials

May 24th 2019 Matthias Schmidt Head of Product Management Materials

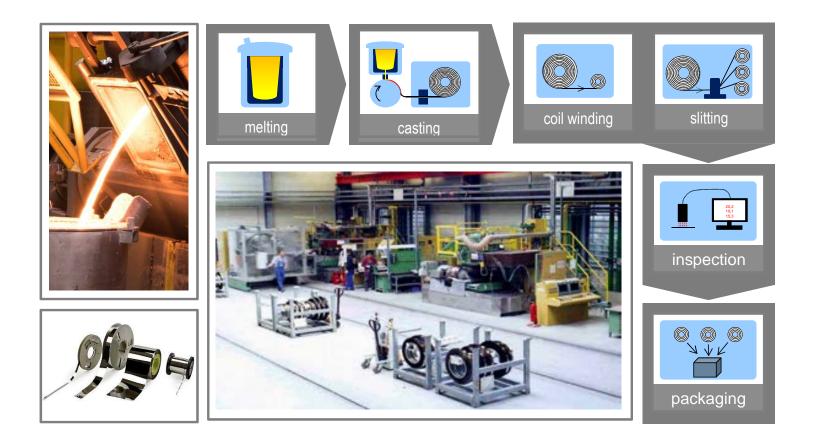

Materials & Components

VAC: Global leader in magnetic materials

Who we are


- VAC's portfolio of magnetic materials consists of more than 120 different alloys and materials
- VAC produces the full range of magnetic materials of soft, semihard and permanent magnetic materials
- Several key materials are developed by VAC
- VAC has production know how for all important key production technologies used for magnetic materials
 - Rapid solidification technology for amorphous and nanocrystalline materials
 - Melting and hot & cold rolling of crystalline materials
 - Powder technology for permanent magnets

VAC Value Chain Integration



• Collaborative design process with clients to develop customized products specified to their long-term needs

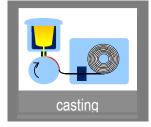
VAC features a close-knit and client-focused design and production process

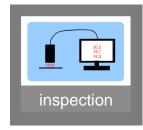
Production Process of Amorphous Foils at

Impact of Productions Steps on Quality

- Homogeneous chemical composition \rightarrow saturation flux density Bs
- Vacuum treatment \rightarrow high purity & consistent composition

Casting:


- uniform thickness
- high surface quality
- excellent ductility


Testing

- Testing of magnetic properties for each batch: Bs and permeability µ
- Testing of width, thickness, ductility & surface quality for each coil
- High quality ensures reliable and consistent material supply for wireless power transfer (WPT) applications

Nanocrystalline Material is VITROPERM[®]

Nanocrystalline VITROPERM®

Unique combination of material properties

- VAC was one of the first companies in the world starting mass production of nanocrystalline VITROPERM[®] in 1992
- More than 25 years experience in the production of amorphous and nanocrystalline materials
- VAC developed VITROPERM[®] to a widely diversified Nanocrystalline material family covering a wide range of properties and requirements
- VAC is under development of nanocrystalline materials of the next generation with
 - Higher saturation flux density
 - Lower losses
 - Thinner ribbon thickness

Key properties	VITROPERM
Material base	≈ 70 % Fe
Saturation flux density B _s [T]	> 1.2
Adjustable permeability μ_i	4,000 – 200,000 (F), 1,000,000 (Z), Max. 600,000 (R)
Coercivity H _c [A/m]	0,5
Losses P _{Fe} [W/kg] (100 kHz/300mT/100 °C)	< 80
Saturation magnetostriction λ_s	$\approx 0 (10^{-8} - 10^{-6})$
Max. operation temperature T _{op}	> 150°C (180°C)

VITROPERM[®] → High saturation flux density

→ High permeability

→ Lowest magnetic losses

Nanocrystalline VITROPERM® 800

Key properties vs. other materials

	Nanocrystalline VITROPERM 800	Amorphous FeSiB	Ferrite	
Main composition	FeCuNbSiB (83 wt.% Fe)	Fe(SiB) (85-90 wt.% Fe)	NiZn	MnZn
Saturation flux density B _s [T]	> 1.2	1.4 – 1.6	< 0.35	< 0.45
Saturation magnetostriction λ_s [10 ⁻⁶]	≈ 0	25 - 35	20 - 40	20 - 40
Coercivity H _c [A/m]	0.5 - 1	4 - 10	5 - 15	5 – 15
Thermal conductivity [Wm/K]	10	12	1 - 3	1 - 3
Losses P _{Fe, typ.} [W/kg] (100 kHz, 200 mT)	< 35	60		
Max. operation temperature T _{op}	> 150°C	< 120°C	< 120°C	< 120°C

VITROPERM[®]

- → High saturation flux density
- → High permeability
- → Lowest magnetic losses

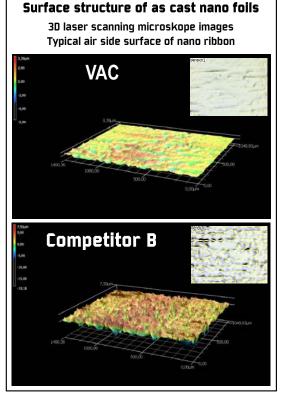
VITROPERM[®] 800 Foil Grades

For cores & components, EMI shielding and Wireless Power Transfer (WPT) applications

Foil thickness:		19 µm	18 µm	17 µm	16 µm
Thickness tolerance	(µm)	± 2	± 3	± 2	± 2
Foil width "as cast"	(mm)	25 – 60	25 - 66	60	25 - 108
"as cast" width tolerance	(mm)	± 0.5 / ± 1.0			
Foil width "slit"	(mm)	3 - 56	3 - 56	-	3 - 102
"slit" width tolerance	(mm)	± 0.10 / ± 0.15			

- ightarrow VAC standard VITROPERM[®] grade 18 μ m is used for WPT application, too
- → Fulfillment of WPT quality requirements are confirmed by several customers
- → VAC has best long-term experience of high volume deliveries for WPT applications (since 2014 more than 600 t)
- → VAC produces and sells wide ribbons (66 mm and more) since 2013

Benefits of VITROPERM® 800

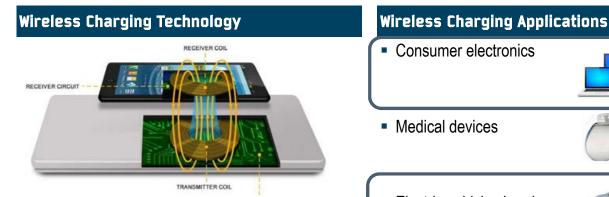


vs. competitor materials

Typical values for some key features		VAC	Competitor A	Competitor B	
Brittleness of foil	Ribbon breaks per 100 km	< 3	>100	>10	
Holes (size)	Diameter in mm	< 0.3	< 0.3	1-5	
Holes (amount)	Counts per km ribbon	< 100	> 1000	> 10000	
Surface roughness	Ra (air side)	0.7	0.7	1.1	

VITROPERM[®] is best in class material

- → Highest surface quality
- → Lowest size and amount of holes
- → Best in class consistency of mechanical properties
- → Best homogeneity of chemical composition



WPT Applications

ADVANCED MATERIALS – THE KEY TO PROGRESS

11

Wireless charging – Applications / Markets

- Wireless charging is a method for transferring electrical energy from a charger to a device without the need for a physical wire connection
 - Requires coupling of wireless charging pad with compatible device with built-in receiver
 - Provides convenience by removing need to physically plug-in device to cable
- Electric vehicle charging
- Household appliances

Military/Aviation

ADVANCED MATERIALS – THE KEY TO PROGRESS

VACUUMSCHMELZE

Wireless Charging: Product Differentiation

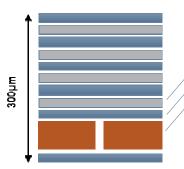
Special requirements

- High ductility in amorphous state
 - Leads to higher yield in processing
- Excellent surface quality
 - No holes or pimples
 - No scratches or splits
 - No wavy surface or rippled edges
- Consistent thickness
 - No wedge shape or thicker edges
- Low stacking thickness
 - High filling factor
 - Trend goes to thinner material
- Flat winding condition of coil
 - No damaged ribbon edges
- Greater foil width
 - 60 mm \rightarrow 66 mm \rightarrow 100 mm

VITROPERM® 800 unique selling points

- Outstanding ductility
- Highest surface quality
 - Lowest size and amount of holes
- Best in class consistency of mechanical properties
- Highest filling factor
- Best homogeneity of chemical composition

VITROPERM[®] 800


- → Best-in-class WPT properties are confirmed by customers
- → VAC delivered more than 600 t into WPT applications since 2014

WIRELESS POWER

Layer plastic foil Layer VP 800 Copper winding

Wireless EV Charging

Special requirements (additional)

- Consistent magnetic properties over a broad temperature range (for Rx)
 - - 40 ... 85 (120) °C
- High mechanical stability
 - Resistant to shocks and vibrations
- High WPT efficiency
 - Short charging times
- Low losses at high power levels
 - No heating up of WPT system
- Easy assembly and low weight
 - No 'chess board' assembly
 - Low total thickness of Rx

VITROPERM® 800 unique selling points

- High thermal stability and wide range of operating temperature
 - Curie temperature Tc ≈ 600 °C
- Multilayer lamination of VITROPERM 800

 Unbreakable
- WPT system with VITROPERM 800 has same or higher WPT efficiency like ferrite systems
- Higher permeabilities of VITROPERM 800 (1,000 – 3,000 @ 85...125 kHz) lead to higher coupling factors vs. ferrite systems
- Multilayer lamination of VITROPERM 800
 Wider due to its robustness
 - Thinner due to its robustness
 - vs. ferrite systems

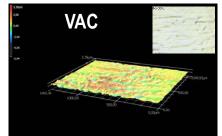
	Inductive charging
Mode	-
Standard	IEC 61980-3
Power class	25.5 kW 1122 kW
Connection	Schuko / CCE
Communication	Wireless

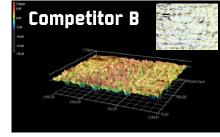
ADVANCED MATERIALS - THE KEY TO PROGRESS

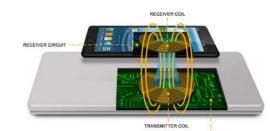
14

Key Take Aways

ADVANCED MATERIALS – THE KEY TO PROGRESS


15


Key Take Aways VITROPERM®


- Nanocrystalline VITROPERM[®] 800 has unique and outstanding combination of properties vs. other technical solutions:
 - Outstanding shielding performance
 - Excellent power transfer efficiency
 - Better thermal conductivity and stability than ferrite solutions
- Consistent material properties & excellent ductility in amorphous state = high yield in processing
- Over 600 mT of VITROPERM[®] 800 shipped to market since 2014 for WPT and shielding applications
- VITROPERM[®] 800 is preferred and benchmark material for WPT applications

