The relevance of Nb alloying in steels for future mobility requirements

> ACBMM Niobium N5

Is weight reduction still important?

Effect of weight reduction on CO_2 emission

Weight reduction of 100 kg results in: -8 to -12 gr./km CO_2

Effect of weight reduction on fuel economy

Weight reduction of 100 kg results in: -0.15 to -0.5 liter/100 km fuel

Effect of weight reduction on driving performance

Faster acceleration, shorter braking distance, more payload

Range extension BEV

Is weight reduction still important?

BEV: up to 700 kg added

- Induces higher stresses on chassis and axle components.
- Increases kinetic energy and thus crash challenges.
- Causes more tire and brake wear (particle emission).
- Reduces drivability and handling.

\Rightarrow Cost efficient weight reduction is still very relevant.

Component design considerations

Packaging requirements

Conventional vehicles:

- Sophisticated component geometries.
- Complex deep-drawing operations.

Electric vehicles:

00000-

- Less geometrically demanding deep-drawn parts, lower elongation demands.
- Packaging front end of pure electric vehicles is not particularly complex.
- Manufacturing by bending operations / roll forming.

Material choices

ACBMM Niobium N5

Choices of steel grades for car body components

ACBMM Niobium N5

Design requirements for construction materials

Simplified front-end structure

Missing engine block requires stronger front structure ⇒ Heavy gage PHS

Rather simple & straight geometries ⇒ Roll formed UHSS ⇒ Tubular structures

Strong & undeformable battery case \Rightarrow PHS or roll formed UHSS

No more tank – Integration of new energy storage

Battery skateboard

Hydrogen storage / fuel cell

Requires high protection against damage in case of crash.

Mechanical integrity testing of new energy storage

Evolution of ultra-high strength cold forming grades

D.al Phase

1st gen AHSSgrades

Advanced DP-steel grades

Harder martensite Asterite as third phase

Low-CD.al Phase

Softer martensite **Bainite as third phase**

TRP-Bainite Dial Phase character: HER **TRP** Martensite HER

3rd gen steel grades

Lover strength & Higher elargation

- Complex Prase character: Hgher strength &

 - Lover elarcation

Low-C platform concept with Nb / B (Ti) microalloying

Improving bendability of DP grades by grain refinement

Nb-microalloying to standard DP780 steel refines microstructure:

- increased critical bending angle
- Reduced min. bending radius.

Profiling? – Single phase beats multiphase

Optimizing press hardening steel

Cracking resistance under bending

Hydrogen-induced cracking resistance

00000-

Niobium's relevance in high strength steel grades

Drawing grades

- Multi-phase microstructure
- Grain refinement
- Homogeneous dispersion of phases
- Anti-delayed cracking

Bending grades

- Single-phase microstructure
- Grain refinement
- Precipitation strengthening
- Anti-delayed cracking

Balanced grades

 Compromise between elongation and hole expansion ratio

Cars will not run on water...

...and High Strength Steels will remain the most sustainable material for automotive components !

CONCLUSIONS

00000