

# Battery Technology & Innovation in Power Tools, Robotics, and Cordless Devices

Prashanth Jampani Matt Lai David Grant July, 2019

# Batteries Now Power Everything

# Everything Takes Too Darn Long to Charge

# LONG CHARGE TIMES

3-6 hours

72 to 96 Hours at 110V 7.75 to 10 Hours at 220V 1 to 1.33 Hours at 440V





#### **TODAY'S FAST CHARGE TECH**

Brute force approach of just pushing more current into existing battery structures causes 3 problems

#### **Decreases Life of Battery**

Chemical break downs causes batteries to have much shorter lifetimes

#### **Creates Excess Heat**

Wastes energy, needs to be managed, limits current & therefore speed of charge

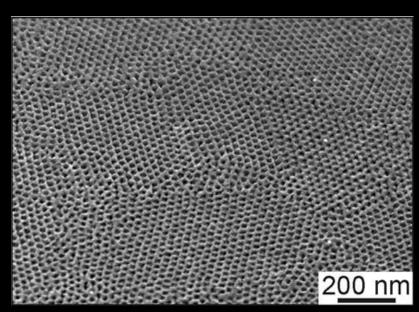
#### Still Not That Fast

Chemical process is slower so basically although faster it is just not that fast

# Battery Streak Batteries Charge to 80% in 10 minutes

Current Lithium Ion Charging Technology 2%

Battery Streak Lightning Fast Charging 80%


#### **OUR BREAKTHROUGH**

# New nano-structured material for the electrode allows for a massively parallel charging process

- Sponge like material with pores of 20 to 50 nanometers. (Human hair is about 200,000 nanometers)
- Stores energy like a capacitor- electrostatic surface (Not a chemical storage) charge. Discharges like a battery
- Charges Fast ...
  - Without impacting battery life
  - Without heat
  - And much, much faster

### PATENTED MATERIAL - NIOBIA

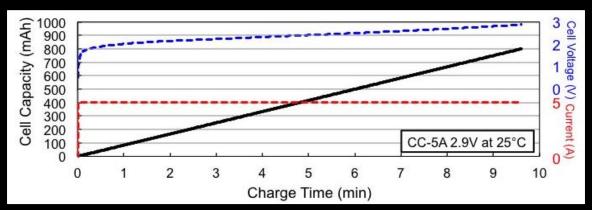
#### Mesopourous Materials Provide Very Large Surface Area Per Unit Volume



SEM image of mesoporous  $TiO_2$  film

- Multiple issued patents
- Material invented at UCLA, exclusively licensed and developed at Battery Streak
- Prototype batteries created with standard lithium ion battery production process

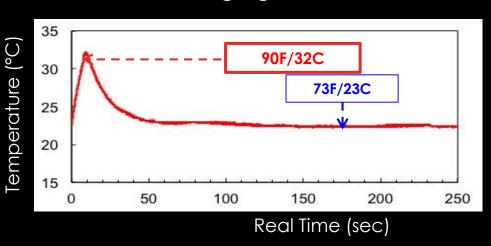
### WHERE WE CAME FROM


2008 - Research started at UCLA – Dr Bruce Dunn & Dr. Sarah Tolbert
 May 2017 - Battery Streak formed to commercialize the technology
 - Seed round led by Act One Ventures

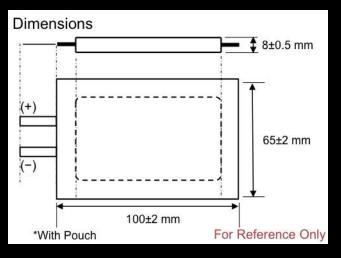




## PROTOTYPE BATTERIES


Regular Charge: >80% charged in <10 minutes




50% in 3.5 min - 90% in 9 min

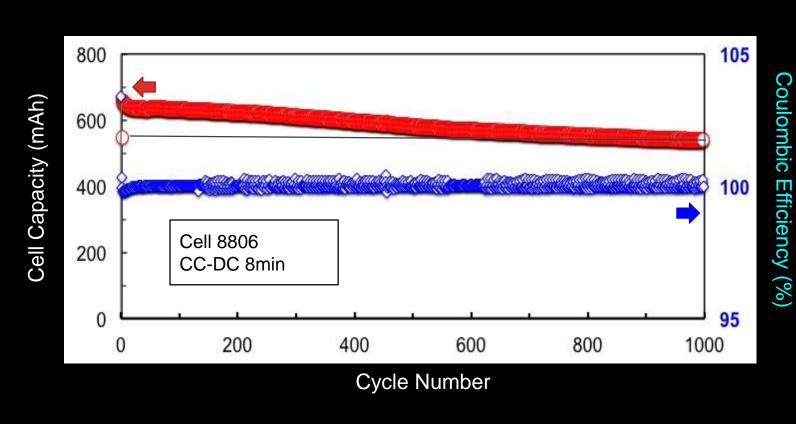
# Cell Capacity (mAh) 800 800 800 600 400 200 Charging Time (min)

Max Temp = 90°F/ 32°C Charging at 10C



# PROTOTYPE BATTERIES






| Capacity (mAh)                     | $1000 \pm 10\%$  |
|------------------------------------|------------------|
| Nominal Voltage (V)                | 2 V              |
| Internal Resistance (m $\Omega$ )  | < 30             |
| Gravimetric Energy Density (Wh/kg) | $45 \pm 5\%$     |
| Volumetric Energy Density (Wh/L)   | $86 \pm 5\%$     |
| Charge Time to 50% SOC (min)       | 6                |
| Charge Time to 80% SOC (min)       | < 10             |
| Discharge Cut-Off Voltage          | 0.5 V            |
| Max Charge Voltage                 | 2.9 V            |
| Standard Charge Current            | 5 A              |
| Maximum Charge Current             | 6 A              |
| Standard Discharge Current         | 0.2 A            |
| Maximum Discharge Current          | 2 A              |
| Weight W package, pouch            | 55 g             |
| Dimensions - W/O package (mm)      | W45 X L80 X H7.6 |
| Dimensions – W package, pouch      | W65 X L100 X H8  |
| (mm)                               |                  |
| Operating Temperature              | 25 °C            |
| Self-Discharge (mV per 100 hours)  | < 25             |

# LONG BATTERY LIFE

#### Long Lasting

85% Capacity Maintained For 1000 cycles



# FUNDAMENTAL NEW TECHNOLOGY

#### People wanted bigger TVs



#### **Tube TV**

Bigger screen required exponentially more depth and weight

Largest commercial TV was 40" and 750 pounds



#### **Flat Panel**

Fundamental new tech comes along without those limitations

Large screens possible without huge depth or weight

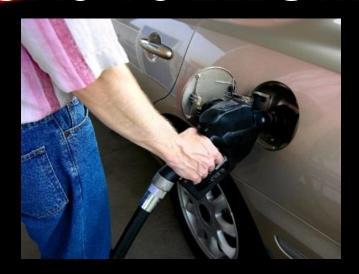
New markets created to put screens in cars, phones, etc.

# MARKETS

- Warehouse Robots
- Power Tools (WW/YR)
- Industrial Tablets (WW/YR)
- Cell Phones (WW/YR)
- Video Cameras (WW/YR)
- Electric Vehicles (US/YR)
  - Battery Packs
  - Regenerative braking

40,000

15,000,000


159,000,000

160,000,000

000,000,8

1,000,000

# GAS VS ELECTRIC CAR





Electric car range

Gasoline fill time

• Electric car fill time



300 miles

300 miles

3 to 5 minutes

1.5 hours minimum

78% of trips < 10 miles</li>

### CHARGE TIME CALCULATION

60 KWh battery pack provides about 200 miles

60 KWh Battery pack X 60min / h = 3,600 KWmin

To charge in 10 minutes = 3,600 KWmin / 10 min = 360 KW

ChargePoint Express Plus Charger = 500 KW

# THE NEW EV MODEL

COULD make cars with a smaller range

- 100 to 200 miles
- Smaller battery packs
- Regenerative braking

Battery chargers at every gas station

Cup of coffee or Check your email

Increase the TAM for EV and chargers by many 0000s.



Need to move from a

MAX MILES per charge mindset

To

MINUTES TO CHARGE mindset

# WAREHOUSE ROBOTS (AGV)

- The global warehouse robot market
  - US\$2.2B in 2016
  - expected to grow at a CAGR of 45.2% 2016-2021
    - Projected US\$6.7B

Source: BIS Research (2018)

- Robots as a Service (RaaS)
  - Market estimated to be \$5B by 2023
- > 50 companies involved in this space
  - 6 Rivers Robots
     Vecna
  - Boston Dynamics inVia Robotics (Raas)
  - Fetch Robotics
     Vex robotics
    - Amazon GE
  - FedEx UPS
- 620,000 Battery units annually @ \$480 each = net spend of \$300 Million

# **BATTERY OPTIONS**



- Two methods for recharging a warehouse robot
  - Charging station
    - Multiple hours
    - Robot down time
  - Swap batteries
    - 4 minutes
    - Up to 6 per robot Annually
    - Human swaps the batteries
    - Substantial space

#### "Biggest Pain Point"

```
( 6 X $80/battery = $480 )
( $$ / hour )
($$ per ft<sup>2</sup> )
```

• "What good is a robot worker if it doesn't ensure superior efficiencies?" – <a href="www.azom.com">www.azom.com</a> article 1531

#### CHARGE TIME VS SWAPPING



nnovative Applications of O.R.

Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system

Bipan Zou<sup>a</sup>, Xianhao Xu<sup>b</sup>, Yeming (Yale) Gong<sup>c,\*</sup>, René De Koster<sup>d</sup>

1 hour charge time VS 4 minute swap time

**SWAPPING BATTERIES WINS!** 

School of Business Administration, Zhongnan University of Economics and Law, 182 Nanhu avenue, Wuhan 430073, China

School of Management, Huazhong University of Science and Technology, Wuhan 430074, China

EMLYON Business School, 23 avenue Guy de Collongue, Ecully Cedex 69134, France

Rotterdam School of Management, Erasmus University, P.O. Box 1738, DR Rotterdam 3000, The Netherlands

## BATTERIES USED FOR ROBOTS

#### Two types of batteries most commonly used:

- Lead acid batteries
- Nickel-metal hydride



| Specifications           |                     |                |  |
|--------------------------|---------------------|----------------|--|
|                          | In-market batteries | Battery Streak |  |
| Nominal Voltage (V)      | 7 – 12              | 12             |  |
| Energy (Wh)              | 12.8 - 32           | 36             |  |
| Cycle Life (full cycles) | 500 – 2,000         | 3,000          |  |
| Specific Energy (Wh/kg)  | 30 – 40             | 45             |  |
| Energy density (Wh/L)    | 50 - 70             | 85             |  |
| Charge time              | 2-8 hrs             | <10 minutes    |  |

# BATTERY SOLUTION



Best methods for recharging a warehouse robot

- Charging station
  - Less than 10 minutes
  - 2 batteries per robot
  - No human employee
  - Much less space
  - Fully automated operation



# Thank you For Your Time

Battery Streak, Inc 1270 Calle El Cameron Thousand Oaks, CA 91360 www.batterystreak.com