"Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part 1: Concept Development and Effect on Binary Alloys. Part 2: Application to Commercial Alloys"

Hari-Babu Nadendla Brunel University London UK

CHARLES HATCHETT SEMINAR 2016

Grain refinement of Al-Si alloys by Nb-B inoculation

M. Nowak L. Bolzoni N. Hari Babu

Brunel Centre for Advanced Solidification Technology Brunel University London, UK

Outline

- Grain refinement in Al alloys with Al-5Ti-B
- Concept development
- Application to Al-Si cast alloys
- Al-Nb-B master alloy
- Comparative study between Al-Nb-B and Al-5Ti-B master alloys

ALUMINIUM ALLOYS

Factors determining grain size in as cast microstructure

Nucleation & Growth

Heterogeneous nucleation Homogeneous nucleation

Growth Kinetics

- Temperature
- Atmosphere/Pressure
- Growth restriction
- Fragmentation
- Cooling rate

EFFICIENT HETEROGENEOUS NUCLEATION SITES

- 1. High melting Temp
- 2. Low lattice mismatch (atom position matching)
- Chemical stability (should not react with alloying elements)

N. Hari Babu et al., Nature Materials 2005;4:476

GRAIN REFINERS IN ALUMINIUM INDUSTRY

GRAIN REFINEMENT: AI-Ti-B AI-Ti-C

 $TiB_2 \& Al_3 Ti$

• Orientation Relationships {111}Al//{112}Al₃Ti//{001}TiB₂

<110>Al//<201>Al₃Ti

<110>Al₃Ti//<110>TiB₂

HREM image of Al/Al₃Ti/TiB₂ interface

Source: B. J McKay

MODIFICATION:

Sr modification of the Si morphology

P to nucleate the primary Si particles

Influence of Al-Ti-B grain refiner for Al-Si alloys

Ti reaction with Si in Al-Si alloys

Ti is consumed by the formation of TiSi₂ and TiSi

LATTICE MISMATCH

		Melting	Density		Lattice
Element	Phase	Point [°C]	[g/cm ³]	Lattice structure	parameter
Aluminium	Al	660	2.70	Face-Centred Cubic	a = 4.050 Å
	Ti	1668	4.51	Hexagonal	a = 2.950 Å, c = 4.683 Å
Titanium	Al₃Ti	1350	3.36	Tetragonal	a = 3.848 Å, c = 8.596 Å
	TiB ₂	3230	4.52	Hexagonal	a = 3.023 Å, c = 3.220 Å
	TiC	3160	4.93	Face-Centred Cubic	a = 4.330 Å
Niobium	Nb	2468	8.57	Body-Centred Cubic	a = 3.300 Å
	Al3Nb	1680	4.54	Tetragonal	a = 3.848 Å, c = 8.615 Å
	NbB2	3036	6.98	Hexagonal	a = 3.102 Å, c = 3.285 Å
	NbC	3490	7.82	Face-Centred Cubic	a = 4.430 Å

Low Lattice Mismatch – Coherent Interface

Nb chemical stability with Si

J.L. Muray and A. J. Alister, Bulletin of Alloy Phase Diagrams 1984;5:74

Nb silicides form at higher temperature than Ti silicides thus preventing poisoning

Addition of Nb metal powder to liquid Al

Poor dissolution of Nb in liquid Al

	T [°C]				
	700	750	800	850	
Solubility, K [wt.%]	0.020	0.034	0.057	0.10	
Dissolution rate constant, K_l [m/s]	4.60	5.10	6.20	6.80	
Coefficient of diffusion, $D \cdot 10^9 \text{ [m}^2/\text{s]}$	1.61	1.86	2.49	2.89	

C - C	$\left[1-\exp\right]$	($\begin{bmatrix} k \cdot s \cdot t \end{bmatrix}$		
$c - c_s$			v	IJ	

Requires high temperature for larger Nb particles and high concentrations

Addition of Nb fine metal powder to liquid Al

Nb- Superconductivity – 9K To verify the Nb dissolution, magnetic moment vs temperature measured

EFFECT OF Nb on CP AI

COMPARISON OF AI-TI-B AND Nb-B ON CP AI

COMPARISON OF AI-TI-B AND Nb-B TO HYPOEUTECTIC BINARY AI-SI Alloys

Reference

0.1wt.% AI-5Ti-1B

0.1wt.% Nb & B (powders)

COMPARISON OF AI-TI-B AND Nb-B TO HYPOEUTECTIC BINARY AI-SI Alloys

Al-Si alloys for automotive applications

Engine & transmission Components

Crankcases Cylinder heads Intake manifolds Housings manual/automatic transmissions Housings power transfer units

Chassis Components Subframes Knuckles Steering housings

Structural Components

Body structures Instrument panels Door frames

Wheels

Undercooling for Al-10Si alloy

Undercooling in the presence of NbB₂/Al₃Nb

The Charles Hatchett Award 2016 Lecture

GRAIN STRUCTURE

Cooling curves for Al-11Si (LM6) alloy

HYPEREUTECTIC BINARY AI-Si ALLOYS

Al-14Si

HYPEREUTECTIC BINARY AI-Si ALLOYS - EUTECTIC

HYPEREUTECTIC BINARY AI-Si ALLOYS – PRIMARY SI

Application of Nb-B grain refiner to Al-Si commercial alloys

Commercial alloys tested with Nb-B

GB	USA	Si	Mg	Mn	Cu	Ni	Zn	Fe
LM6	A413	10.0-13.0	0.1max	0.5max	0.1max	0.1max	0.1max	0.6max
LM13	336	10.0-13.0	0.2-0.4	0.5max	0.7-1.5	1.5max	0.1max	1max
LM24	A380	7.5-9.5	3 max	0.5max	3.0-4.0	0.5	3	1.3max
LM25	A356	6.5-7.5	0.2-0.6	0.3	0.2	0.1	0.1	0.5
		9.99	0.005	0.005	0.0017	0.0044	0.005	0.09
		10.98	0.268	0.21	2 134	0.068	0.778	0.83
		10.90	0.200	0.21	2.134	0.000	0.770	0.05
		6.06	0.075		0.705	0.0257		0.256
		6.06	0.275	0.265	2.725	0.0257	0.305	0.356
		11.9	0.8	0.005	3.7	2	0.003	0.12

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys

Fine & uniform grain structure
Grain size is less sensitive to cooling rate
Highly effective in sand casting cooling conditions
Reduced porosity & macro defects
Fine eutectic structure & intermetallics
Improved ductility & strength
Tolerant to Fe contamination
Recycling of Al-Si scrap

COMMERCIAL HYPOEUTECTIC AI-Si ALLOYS

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
Fine & uniform grain structure
Grain size is less sensitive to cooling rate
Highly effective in sand casting cooling conditions
Reduced porosity & macro defects
Fine eutectic structure & intermetallics
Improved ductility & strength
Tolerant to Fe contamination
Recycling of Al-Si scrap

Al-Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloysFine & uniform grain structure

Grain size is less sensitive to cooling rate

Highly effective in sand casting cooling conditions
 Reduced porosity & macro defects
 Fine eutectic structure & intermetallics
 Improved ductility & strength
 Tolerant to Fe contamination
 Recycling of Al-Si scrap
EFFECT OF COOLING RATE

EFFECT OF COOLING RATE

EFFECT OF COOLING RATE

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
Fine & uniform grain structure
Grain size is less sensitive to cooling rate

Highly effective in sand casting cooling conditions

Reduced porosity & macro defects
 Fine eutectic structure & intermetallics
 Improved ductility & strength
 Tolerant to Fe contamination
 Recycling of Al-Si scrap

REFERENCE

Al-Nb-B ADDITION

Al-9Si-2Cu-0.7Mg-0.15Fe

A354

Alloy	Condn.	%Cu	%Mg	%Si	%Fe	%Mn	%Ni	%Zn	%Pb	%Sn	%Ti	%Sr
A354	CAST	1.60-2.0	0.50- 0.60	8.6-9.44	0.154	0.05- 0.10	0.054	0.10	0.014	0.054	0.10- 0.154	0.02- 0.030

Al-Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
 Fine & uniform grain structure
 Grain size is less sensitive to cooling rate
 Highly effective in sand casting cooling conditions
 Reduced porosity & macro defects

Fine eutectic structure & intermetallics
 Improved ductility & strength
 Tolerant to Fe contamination
 Recycling of Al-Si scrap

Reduced Macro-porosity with Nb-B

The Charles Hatchett Award 2016 Lecture

Porosity

Reduced porosity in Nb-B grain refiner added castings

Al-7Si alloy

Without

With Nb-B addition

Fine grain structure Reduced porosity

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
 Fine & uniform grain structure
 Grain size is less sensitive to cooling rate
 Highly effective in sand casting cooling conditions
 Reduced porosity & macro defects

Given an anticity of the anticity of the antices and anticity of the anticity

□ Improved ductility & strength □ Tolerant to Fe contamination

Recycling of Al-Si scrap

Fine eutectic structure

Al-11Si (LM6)

with Nb-B

Finer Eutectic Si - wider range of cooling rates

Al-10Si

With Nb-B

Reference (Al-13Si)

with Nb-B

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
Fine & uniform grain structure
Grain size is less sensitive to cooling rate
Highly effective in sand casting cooling conditions
Reduced porosity & macro defects
Fine eutectic structure & intermetallics

Improved ductility & strength

Tolerant to Fe contaminationRecycling of Al-Si scrap

Improved strength & ductility

Al-13Si piston alloy

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
Fine & uniform grain structure
Grain size is less sensitive to cooling rate
Highly effective in sand casting cooling conditions
Reduced porosity & macro defects
Fine eutectic structure & intermetallics
Improved ductility & strength

Tolerant to Fe contamination

Recycling of Al-Si scrap

Control of Fe-intermetallics in Al scrap

Grain refiner to control Al-Fe-Si intermetallics

Al-Fe-Si large needle structure detrimental to mechanical properties

Recovery of properties in Fe-rich aluminium scrap

Nb-B Grain Refiner for Al-Si cast alloys

Highly effective for Al-Si alloys & Mg alloys
Fine & uniform grain structure
Grain size is less sensitive to cooling rate
Highly effective in sand casting cooling conditions
Reduced porosity & macro defects
Fine eutectic structure & intermetallics
Improved ductility & strength
Tolerant to Fe contamination

Re-melting & Fading study

REQUIRED TIME TO SEDIMENT/FADE

Remelting

Al-9Si-1.5Cu-0.6Mg-0.15Fe / RE-MELT

MASTER ALLOY DEVELOPMENT

Al-Nb-B Master Alloy

1. Nb metallic powder + KBF4

2. Addition of Nb metallic powder to diluted Al-B master alloy

MASTER ALLOY (METHOD 1)

AI-2Nb-2B (METHOD 2)

Al-4Nb-1B ON LM25

Al-4Nb-1B on LM6

Al-2Nb-1B ON Al-10Si

EFFECT OF AI-2Nb-2B ON UNDERCOOING FOR COMMERCIAL AI-Si ALLOYS

Time [s]

Material	Si content [wt. %]					
		7	8.5	10.5		
Reference	ΔTα	1.7	1.4	1.4		
	∆T _{€U}	1.4	1.8	0.9		
Al-2Nb-2B master alloy addition	ΔT_{α}	0.6	0.3	0.4		
	∆T _{eu}	1.1	1.3	0.7		

EFFECT OF AI-2Nb-2B ON COMMERCIAL AI-SI ALLOYS

> HYPO-EUTECTIC ALLOYS (LM24/25)

EFFECT OF AI-2Nb-2B ON COMMERCIAL AI-Si ALLOYS

EFFECT OF AI-2Nb-2B ON COMMERCIAL AI-Si ALLOYS

740 °C
EFFECT OF AI-2Nb-2B ON COMMERCIAL AI-SI ALLOYS

Al-10 Si alloy - Direct Chill Cast Billets

Al-10Si DC billets

Comparative study between Al-Nb-B and Al-5Ti-B master alloys

Comparison between Ti-B and Nb-B

0.1% Nb

0.1%Ti

GRAIN REFINEMENT EFFICIENCY COMPARISON

WHEEL ALLOYS (HYPO-EUTECTIC: 7 wt.% Si) 740°C

Summary

•Nb-B addition to Al-Si melt refines the grain structure of casting

- End-user benefits:
 - Improved strength & ductility
 - ✓ Lighter/thinner structures
 - •Homogeneous properties (thick & thin sections)
 - ✓ Complex structures
 - Tolerant to Fe contamination
 - ✓ Closed loop recycling of scrap containing higher Fe
 - Reduced shrinkage porosity Improved soundness
 - ✓ Component rejection ratio can be minimised