



# Niobium tungsten oxides for high-rate lithium-ion energy storage

Kent J. Griffith<sup>1\*</sup>, Kamila M. Wiaderek<sup>2</sup>, Giannantonio Cibin<sup>3</sup>, Lauren E. Marbella<sup>1#</sup>, Clare P. Grey<sup>1</sup>

<sup>1</sup>Department of Chemistry University of Cambridge, Cambridge, UK <sup>2</sup>X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA <sup>3</sup>Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK \*Present address: Departments of Materials Science & Engineering and Chemistry, Northwestern University, Evanston, IL, USA #Present address: Department of Chemical Engineering, Columbia University, New York, NY, USA

41<sup>st</sup> Charles Hatchett Award Seminar, London

Nature 2018, 559, 556–563.

#### **Electrochemical energy storage**

UK set to ban petrol and diesel vehicle sales from 2040

£65 million Faraday Institution for advanced batteries

Grid-scale renewables are increasing and require storage/shifting

Personal electronics, power tools, internet-of-things (IoT), robotics

Lithium-ion battery market (cell level)  $\begin{array}{c}
\end{array}
2018 \rightarrow \$31 \text{ billion, 160 GWh} \\
\end{array}
2025 \rightarrow \$80 \text{ billion, 600 GWh} \\
\end{array}
2030 \rightarrow \$140 \text{ billion, 1200 GWh}$ 





#### **Battery Applications**





Images: Toshiba, Chevy Bolt EV, Wall Street Journal, Stanley Black and Decker

#### **Lithium-ion batteries**





Pecher, O.; González, J. C.; Griffith, K. J.; Grey, C. P. Materials' Methods: NMR in Battery Research. *Chem. Mater.* **2017**, *29*, 213–242.

# State-of-the-art in high power anodes

Lithium titanate spinel:  $Li_4Ti_5O_{12}$ , LTO

Voltage vs. Li<sup>+</sup>/Li: 1.55 V  $\rightarrow$  safety, lower energy Max. theoretical capacity (3 Li/5 Ti): 175 mA·h·g<sup>-1</sup> (less in practice) Long cycle life: >15,000 cycles Limited Li<sup>+</sup> diffusion & e<sup>-</sup> conductivity  $\rightarrow$  nanoscale

Commercial: small anode market share but 25% CAGR 4200 tons/y (2018) → 50,000 tons/y (2030)



Improved high-rate anodes are desired for safe, long lasting, fast charging batteries  $TiNb_2O_7$  (Toshiba), crystallographic shear structure

CAGR = compound annual growth rate

Market data: C. Pillot, Avicenne Energy

#### Niobium-based mixed metal oxides from lessons learnt on Nb<sub>2</sub>O<sub>5</sub>





Griffith, Kent. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-Rate Intercalation without Nanostructuring in Metastable Nb<sub>2</sub>O<sub>5</sub> Bronze Phases. *J. Am. Chem. Soc.* **2016**, *138*, 8888-8899.

# Nb<sub>16</sub>W<sub>5</sub>O<sub>55</sub> crystal structure





Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. *Nature*, **2018**, *559*, 556–563.

#### New anode materials for high power, fast charging lithium-ion batteries

Niobium-based mixed metal oxides from lessons learnt on Nb<sub>2</sub>O<sub>5</sub>





Griffith, Kent. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-Rate Intercalation without Nanostructuring in Metastable Nb<sub>2</sub>O<sub>5</sub> Bronze Phases. *J. Am. Chem. Soc.* **2016**, *138*, 8888-8899.

# Nb<sub>18</sub>W<sub>16</sub>O<sub>93</sub> crystal structure





Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. *Nature*, **2018**, *559*, 556–563.

# Micrometer-scale bulk particle morphology (for high rates??)



Material synthesis Scalable Low manufacturing cost (Li-free synthesis) Electrode manufacturing Standard powder mixing Standard slurry coating





Battery performance Low surface area = low reactivity → long cycle life, high safety



#### Niobium tungsten oxide electrochemistry





Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. *Nature*, **2018**, *559*, 556–563.

0.8

0.6

0.4

Potentia

50

#### Niobium tungsten oxide electrochemistry

**CH** H



dashed lines = theoretical one electron per transition metal capacity

# Niobium tungsten oxide electrochemistry







Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. *Nature*, **2018**, *559*, 556–563.

#### **Chemical and structural insights from synchrotron X-rays**





Diamond Light Source, Beamline B18 Principal beamline scientist: Giannantonio Cibin

#### Multi-edge X-ray absorption spectroscopy



XAS: Element specific, sensitive to bulk, electronic and atomic probe



Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. *Nature*, **2018**, *559*, 556–563.

# $Nb_{16}W_5O_{55}XAS @ Nb K, W L_{II}, W L_{I}edges$





# **Multi-electron Redox at Nb and W**





# **Operando** high-rate structure evolution from synchrotron diffraction





Advanced Photon Source, Argonne National Lab; Beamline scientist: Kamila Wiaderek Borkiewicz, O. J.; Shyam, B.; Wiaderek, K. M.; *et al. J. Appl. Cryst.* **2012**, *45*, 1261–1269.

# **Operando** high-rate structure evolution from synchrotron diffraction





# Pulsed field gradient NMR Spectroscopy



ERSITY OF

MBRIDGE



<u>Niobium tungsten oxides</u>  $D_{Li}$  (298 K) ~ 10<sup>-13</sup> m<sup>2</sup>·s<sup>-1</sup>;  $E_a$  ~ 0.2–0.3 eV

# Putting diffusion coefficients into context

|                                                    | Diffusion Length (µm) |             |            |  |  |  |  |  |
|----------------------------------------------------|-----------------------|-------------|------------|--|--|--|--|--|
| D <sub>Li</sub> (m <sup>2</sup> ·s <sup>-1</sup> ) | 1C (3600 s)           | 20C (180 s) | 60C (60 s) |  |  |  |  |  |
| 1.0×10 <sup>-12</sup>                              | 150                   | 33          | 19         |  |  |  |  |  |
| 1.0×10 <sup>-14</sup>                              | 15                    | 3.3         | 1.9        |  |  |  |  |  |
| 1.0×10 <sup>-16</sup>                              | 1.5                   | 0.33        | 0.19       |  |  |  |  |  |
| 1.0×10 <sup>-18</sup>                              | 0.15                  | 0.033       | 0.019      |  |  |  |  |  |
| 1.0×10 <sup>-20</sup>                              | 0.015                 | 0.0033      | 0.0019     |  |  |  |  |  |



| on Length                                                                                       | (μm)                    | Compound                                                                                                                                                                                                                                           | Structure Type | D <sub>Li</sub> (m <sup>2</sup> ·s <sup>-1</sup> ) | т (к) | Tech-<br>nique | Reference                                                |
|-------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------|-------|----------------|----------------------------------------------------------|
| 2 <b>0C (180 s)</b><br>33                                                                       | <b>60C (60 s)</b><br>19 | Li <sub>10</sub> GeP <sub>2</sub> S <sub>12,</sub> Li <sub>7</sub> GePS <sub>8,</sub><br>Li <sub>10</sub> SnP <sub>2</sub> S <sub>12</sub> Li <sub>7</sub> P <sub>3</sub> S <sub>11</sub> , &<br>Li <sub>11</sub> Si <sub>2</sub> PS <sub>12</sub> | Thio-LISICON   | 1–5<br>×10 <sup>-12</sup>                          | 298   | PFG NMR        | Kuhn et al. (2013),<br>(2014), Hayamizu et<br>al. (2013) |
| 3.3<br>).33                                                                                     | 1.9<br>0.19             | β-Li <sub>3</sub> PS <sub>4</sub>                                                                                                                                                                                                                  | Thio-LISICON   | 5.4×10 <sup>-13</sup>                              | 373   | PFG NMR        | Gobet et al.                                             |
| ).033                                                                                           | 0.019                   | Li <sub>0.6</sub> [Li <sub>0.2</sub> Sn <sub>0.8</sub> S <sub>2</sub> ]                                                                                                                                                                            | Layered (O1)   | 2-20×10 <sup>-12</sup>                             | 298   | PFG NMR        | Holzmann et al.                                          |
| ).0033                                                                                          | 0.0019                  | Li <sub>1.5</sub> Al <sub>0.5</sub> Ge <sub>1.5</sub> (PO <sub>4</sub> ) <sub>3</sub>                                                                                                                                                              | NASICON        | 2.9×10 <sup>-13</sup>                              | 311   | PFG NMR        | Hayamizu et al.                                          |
|                                                                                                 |                         | Li <sub>6.6</sub> La <sub>3</sub> Zr <sub>1.6</sub> Ta <sub>0.4</sub> O <sub>12</sub>                                                                                                                                                              | Garnet         | 3.5×10 <sup>-13</sup>                              | 353   | PFG NMR        | Hayamizu et al.                                          |
| Liquid electrolytes are<br>10 <sup>−10</sup> −10 <sup>−12</sup> m <sup>2</sup> ·s <sup>−1</sup> |                         | Graphite (Stage I)                                                                                                                                                                                                                                 | Graphite       | 1-2×10 <sup>-15</sup>                              | 298   | NMR<br>relaxn. | Langer et al.                                            |
|                                                                                                 |                         | Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub>                                                                                                                                                                                                    | Spinel         | 3.2×10 <sup>-15</sup>                              | 298   | µ⁺-SR          | Sugiyama et al.                                          |
|                                                                                                 |                         | LiMn <sub>2</sub> O <sub>4</sub>                                                                                                                                                                                                                   | Spinel         | 1×10 <sup>-20</sup>                                | 350   | NMR<br>relaxn. | Verhoevenm et al.                                        |



Niobium tungsten oxides  $D_{Li}$  (298 K) ~ 10<sup>-13</sup> m<sup>2</sup>·s<sup>-1</sup>;  $E_a$  ~ 0.2–0.3 eV

#### Insights from electronic structure calculations





 Koçer, Can P.; Griffith, Kent J.; Grey, Clare P.; Morris, Andrew J. *Phys. Rev. B* 2019, *99*, 075151.
 Koçer, Can P.; Griffith, Kent J.; Grey, Clare P.; Morris, Andrew J. Cation Disorder and Lithium Insertion Mechanism of Wadsley–Roth Crystallographic Shear Phases from First Principles. arXiv: 1906.04192

# Mechanism of high-rate Li intercalation in niobium tungsten oxides





Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. *Nature*, **2018**, *559*, 556–563.
 Kim, Yumi; Griffith, Kent J.; Lee, Jeongjae; Jacquet, Quentin; Rinkel, Bernardine L. D.; Grey, Clare P. High Rate Lithium Ion Battery with Niobium Tungsten Oxide Anode. *In preparation.*

**Clare Grey** 

Lauren Marbella

Kamila Wiaderek, Giannantonio Cibin, Anatoliy Senyshyn

COMMONWEALTH

John Griffin, Alex Forse

Can Koçer, Martin Mayo, Matthew Evans, Chris Pickard, Andrew Morris

# CAMBRIDGE TRUST

STFCBatteries.org



Herchel Smith Scholarship



