

THE ROLE OF NIOBIUM IN FUEL CELLS AND HYDROGEN PRODUCTION TECHNOLOGIES

Robson S. Monteiro, Ph.D Senior Market Development Specialist

CBMM Niobium N5

2020 CHARLES HATCHETT AWARD HYDROGEN SEMINAR

- HYDROGEN ECONOMY BACKGROUND
- NIOBIUM MARKET OPPORTUNITIES
- ightarrow
 - Photocatalytic Water Splitting
 - Water Electrolysis
- - PEM Fuel Cells

 - Carbon Free Catalyst Supports

ACBMM Niobium N5

OVERVIEW

NIOBIUM ROLE ON GREEN HYDROGEN PRODUCTION

• NIOBIUM ROLE ON HYDROGEN CONVERSION

• PGM Free and PGM Reduced Catalyst

- NIOBIUM MARKET OPPORTUNITIES

ACBMM Niobium N5

OVERVIEW

• HYDROGEN ECONOMY BACKGROUND

WHY DO WE NEED HYDROGEN?

Energy Density

Emissions

Fuel	MJ/kg	kWh/kg	Fuel Source
Hydrogen	120	33.6	Hydrogen
Gasoline	46.4	12-14	Gasoline
Diesel	45.5	12-14	Diesel
Natural Gas	53.6	14.7	Natural Gas

Source: Wikipedia

Source: Wikipedia

HYDROGEN IS A CLEAN AND FULLY DECARBONIZED SOURCE OF ENERGY

Compounds

H_2O

NO_x, CO/CO₂, unburned HCs

 NO_x , SO_x , CO/CO_2 , PM, unburned HCs

> $NO_{x'} CO/CO_{2'}$ unburned CH₄

ENERGY TRANSITION – 7 ROLES OF HYDROGEN

DECARBONIZING ENERGY MATRIX -

- **Conventional Storage** 子 册 Power Generation 高 Renewables Waste TE × 召 H₂O Nuclear Hydrogen Generation **Electric Grid** Infrastructure Fossil with CCUS Gas Infrastructure
- [1] Enabling large-scale renewables integration and power generation
- [2] Distribute energy across sectors and regions
- [3] Act as buffer to increase system resiliance
- [4] Help decarbonize transportation
- [5] Help decarbonize industrial energy use
- [6] Help decarbonize buildings heat and power
- [7] Serve as a renewable feedstock

Source: McKinsey & Co.

Source: H2@Scale (DOE) https://www.energy.gov/eere/fuelcells/h2scale

HYDROGEN MARKET POTENTIAL – 2050, %

- ² For aviation and freight ships.
- ³ Carbon capture and utilization; % of total methanol, olefin, and benzene, toluene, and xylene (BTX) production using olefins and captured carbon.

Source: McKinsey&Company

- NIOBIUM MARKET OPPORTUNITIES

ACBMM Niobium N5

OVERVIEW

• HYDROGEN ECONOMY BACKGROUND

Courtesy from Pajarito Powder LLC (Albuquerque, NM)

CN MuldoiN **AYCBMM**

OVERVIEW

- HYDROGEN ECONOMY BACKGROUND
- ightarrow
 - Photocatalytic Water Splitting
 - Water Electrolysis

ACBMM Niobium N5

NIOBIUM ROLE ON GREEN HYDROGEN PRODUCTION

• NIOBIUM ROLE ON HYDROGEN CONVERSION

GREEN HYDROGEN PRODUCTION TECHNOLOGIES

PHOTOCATALYTIC WATER SPLITTING

- Charge carriers separation (e^{-}/h^{+}) drives water splitting efficiency;
- Must occur under the **same timescales** of photoexcited carriers (e⁻/h⁺) **recombinations**
- Overall water splitting: **band-gap tuning; cocatalysts; nanostructuring**; etc.

Hisatomi et al, *Catal Lett* 145 (2015) 95

NIOBIUM BASED PHOTOCATALYTIC MATERIALS

NIOBATES – \rightarrow KCa₂Nb₃O₁₀; K₄Nb₆O₁₇; NiO-K₄Nb₆O₁₇ (Band Gap: 3.0 – 3.5 eV)

LAYERED COMPOUNDS - \rightarrow Sr₂Nb₂O₇; Ca₂Nb₂O₇ (Band Gap: 1.8 – 2.0 eV)

OXYNITRIDES PEROVSKITES and NITRIDES –

 \rightarrow CaNbO₂N; SrNbO₂N; BaNbO₂N \rightarrow NbN; Nb₃N₅ (Band Gap: \leq 1.8 eV)

Hisatomi et al, *Catal Lett* 145 (2015) 95 Domen et al, J. Am. Chem. Soc. 133 (32) (2011) 12334 Domen et al, ACS Appl. Energy Mater. 2 (8) (2019) 5777

Niobium N

AYCBMM

NIOBIUM BASED PHOTOCATALYTIC MATERIALS

BAND GAP TUNING TO H₂O OXI-REDUCTION POTENTIAL

 $Nb_2O_5 \rightarrow NbN \rightarrow Nb_3N_5$ (niobium (V) nitride) – thin films

Suzuki et al, US Pat Appl 2014/0057187 A1 to Panasonic

Sunlight Panels from water splitting

Source: Nikkei Asian Review (11 July 2015) https://asia.nikkei.com/Business/The-future-home-is-where-thehydrogen-power-generator-is https://worldindustrialreporter.com/panasonic-to-createhousehold-hydrogen-power-generators/

WATER SPLITTING

..announced by Panasonic to produce hydrogen

OVERVIEW

- HYDROGEN ECONOMY BACKGROUND
- ullet
 - Photocatalytic Water Splitting
 - Water Electrolysis

ACBMM Niobium N5

NIOBIUM ROLE ON GREEN HYDROGEN PRODUCTION

• NIOBIUM ROLE ON HYDROGEN CONVERSION

GREEN HYDROGEN PRODUCTION TECHNOLOGIES

Kumar et al, Mater Sci Energy Tech 2 (2019) 442

WATER ELECTROLYSIS

CN MunidoiN AYCBMM

PEM WATER ELECTROLYSIS

CATALYSTS DEVELOPMENT CHALLENGES

Table 4		
Historical Results of	Different Electrocataly	sts in PEM Water Electrolysis.
anodo catalust	cathodo cataluct	anode loading (mg/cm ²)

anode catalyst	cathode catalyst	anode loading (mg/cm ²)	cathode loading (mg/cm ²)	membrane	Temp (°C)	Voltage at 1 A/cm ²	Ref.
Ir-Black	40% Pt/GNF	2.0	0.8	Nafion-115	90	1.67	[113]
Ir-Black	40% Pt/XC-72	2.0	0.8	Nafion-115	90	1.70	[113]
Ir-Black	Pt40/Vulcan XC-72	2.4	0.7	Nafion-115	90	1.66	[72]
Ir-Black	Pd40/Vulcan XC-72	2.4	0.7	Nafion-115	90	1.70	[72]
Ir-Black	Pt-black	2.0	0.8	Nafion-117	90	1.71	[156]
IrO ₂	Pt-black	2.0	2.5	Nafion-115	80	1.60	[157]
RuO ₂	40% Pt/C	10	0.4	Nafion-115	-	1.88	[158]
RuO ₂	30% Pt/C	3.0	0.5	Nafion-112	80	1.65	[160]
RuO ₂	30% Pt/C	1.5	0.5	Nafion-1035	80	1.63	[159]
IrO ₂	30% Pt/C	1.5	0.5	Nafion-1035	80	1.67	[159]
IrO ₂	60% Pt/C	3.0	0.5	Nafion-115	80	1.58	[161]
IrO ₂	30% Pt/C	2.5	0.5	Nafion-115	80	1.7	[162]
Ir-Black	Pt/CNT	2.4	-	Nafion-115	90	1.72	[112]
Ru _{0.7} Ir _{0.3} O ₂	40% Pt/C	2.5	0.5	Nafion-117	80	1.70	[154]
IrO ₂ /SnO ₂	40% Pt/C	1.5	0.5	Nafion-212	80	1.57	[155]
RuO ₂ /SnO ₂	40% Pt/C	30.	0.6	Nafion-115	80	1,723	[155]
RuO ₂	40% Pt/C	3.0	0.6	Nafion-115	80	1.74	[155]
RuO ₂	30%Pd/N-CNT	3.0	0.7	Nafion-115	80	1.84	[100]
RuO ₂	30%Pd/P-CNPs	3.0	0.7	Nafion-115	80	2	[82]
RuO ₂	30%Pd/PG	3.0	0.7	Nafion-115	80	1.95	[120]
RuO ₂	30%Pd/PN-CNPs	3.0	0.7	Nafion-115	80	1.90	[163]
Ru _{0.8} Pd _{0.2} O ₂	30% Pt/CB	3.0	0.7	Nafion-115	80	2.03	[164]
Ir0.6Ru0.4O2	20% Pt/C	2.04	2.04	Nafion-115	80	1.56	[154]
RuO ₂	46% Pt/C	1.0	0.2	Nafion-117	80	1.68	[165]
$Ru_{0.9}Ir_{0.1}O_2$	46% Pt/C	1.0	0.2	Nafion-117	80	1.75	[165]
Ru _{0.7} Ir _{0.3} O ₂	46% Pt/C	1.6	0.2	Nafion-117	80	1.80	[165]
Ru _{0,3} Ir _{0,7} O ₂	46% Pt/C	1.4	0.2	Nafion-117	80	1.74	[165]
IrO ₂	46% Pt/C	1.2	0.2	Nafion-117	80	1.80	[165]

- High utilization of costly precious metals as electrocatalysts: Ir-based (anode-OER) and Pt-based (cathode-HER)
- Large hydrogen production scale requires significant reduction of Ir (60-100 wt.%) and Pt (30-60 wt.%) amounts
- Durable, acid resistant and kinetic performance at lower PGM loadings

Kumar et al, Mater Sci Energy Tech 2 (2019) 442

PEM WATER ELECTROLYSIS – ANODE CATALYST

OXYGEN EVOLUTION REACTION

Nb-TiO₂ supported IrO₂, IrRuO_x

IrO₂ and IrRuOx (Ir:Ru 60:40 at.%) on TiO₂ and Nb-doped TiO₂ nanotubes

- + TNT 145 m².g⁻¹
- + 3 wt.% Nb-TNT 260 m².g⁻¹ (added corrosion resistance + enhanced OER activity)
- + Nb(IV) species, act as free electron donors to the conduction band of TiO₂
- + HSA Nb-doped TiO₂ support: *IrO₂, IrRuO_x better dispersion; stability and electronic conductivity*

j-E curves, corrected by IR-drop, normalized by electrode section $(0.50 \text{ mol dm}^{-3} \text{ H}_2\text{SO}_4, 1 \text{ mV s}^{-1}, \text{T} = 25 \text{ }^{\circ}\text{C})$

$(H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-)$

Genova-Koleva et al, J Energy Chem 34 (2019) 227

Niobium N Aycomm

PEM WATER ELECTROLYSIS – CATHODE CATALYST

2D TMDs 3R-NbS₂ – Pt replacement

Volcano plot of transition metals vs. 2D TMDs – 3R-NbS₂ presents similar activity to Pt

HYDROGEN EVOLUTION REACTION $(2H^+ + 2e^- \rightarrow H_2)$

Zhang et al, *Materials Today* (2019) in press

PEM WATER ELECTROLYSIS – CATHODE CATALYST HYDROGEN EVOLUTION REACTION $(2H^+ + 2e^- \rightarrow H_2)$

2H-Nb_{1.35}S₂ – Materials Engineering

Chhowalla et al, Nature Materials 18 (2019) 1309

2H-Nb_{1.35}S₂ is a HER catalyst as good as Platinum

Niobium N

- HYDROGEN ECONOMY BACKGROUND

- - PEM Fuel Cells

 - Carbon Free Catalyst Supports

ACBMM Niobium N5

OVERVIEW

• NIOBIUM ROLE ON HYDROGEN CONVERSION

• PGM Free and PGM Reduced Catalyst

HYDROGEN CONVERSION TECHNOLOGY

FUEL CELLS TYPES

CHEMICAL ENERGY INTO ELECTRICITY

General Trends Relationship

Depleted oxygen

Solid Oxide

Molten Carbonate

Phosphoric Acid

Proton Exchange Membrane

Alkaline

Cathode

Jiang et al, Natl Sci Rev 4 (2) (2017) 163

Oxygen

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS

Source: A. K. Prasad, U. Delaware

Technical Challenges

- Pt/C based catalysts cathode and anode
- Cathode ORR activity is slow requires large amounts of costly and restricted Pt
- Pt dissolution and carbon support corrosion in acidic media
- Anode/Cathode CO and S tolerance from H₂ streams from steam reforming and air contamination

Development Strategies

- Pt Alloying e.g., Ni, Co, Ti, Fe, Nb, etc.
- Pt-reduced or Pt-free
- Carbon support modification composites
- Carbon-free supports TiO₂, SnO₂, Nb₂O₅, etc.

ANE (PEM) FUEL CELLS CATALYSTS DEVELOPMENT —

Nb PROPERTIES

- High oxophilicity
- Exceptional stability in acids
- Wide electrochemical window
- Multiplicity of oxidation states

Mukerjee et al, ACS Catalysis 7 (2017) 4936

NIOBIUM PRIME FEATURES

Nb BENEFITS

- Pt ORR activity improved
- ORR catalyst durability enhanced
- Immunity to phosphate anion poisoning
- HOR activity enhanced
- Promote oxidative CO stripping

NbO_x Nanoparticles

Electrodeposited Ultrafine NbO_x Nanoparticles (2-3 nm) on Carbon Black

- Electrodeposition in nonaqueous metal ethoxide-based solutions at RT;
- High onset potential of NbO_x/CB (0.96 V_{RHF}) for ORR activity;
- High chemical stability;
- Highly dispersed nanoparticle structure with a mixture of fully oxide and suboxide states.

PLATINUM FREE CATALYST

Niobium N AYCBMM

https://phys.org/news/2009-10-platinum-fuel-cell-technology.html

Hybrid & Electric Vehicle Progress, October 15, 2009

- 1. SMSI effect leads to high ORR activity and stability:
 - Pt electronic state modification
 - Sintering resistance 0
- 2. Dual-doping enhanced the electronic conductivity

density, Current 0.4 0.6 0.8 0.2 Potential / V vs. RHE

Pt/C-5000 cycles

Pt/C-10000 cycles

Pt/C-30000 cycles

mAcm'

Hwang et al, NPG Asia Materials 9 (2017) 4936

CARBON FREE SUPPORT

Nb-SnO_x catalyst support

Highly conductive Nb-doped SnO_{2-δ} nanoparticle supported Pt electrocatalyst

CARBON FREE SUPPORT

t density/ A cm ⁻²	Mass activity/ g ⁻¹	A
).62	439	
0.67	485	
1.86	1387	
1.79	1063	
L.99	1544	
1.66	1328	

- **Niobium** is being increasing used for the synthesis of **advanced electrocatalysts** for hydrogen production (Photocatalytic Water Splitting and PEM-WE) and **conversion technologies** (PEM Fuel Cells), allowing:
- PGM-free and Carbon-free electrodes
- Higher resistance to corrosion in acidic media \checkmark
- PGM higher dispersion and better use of active sites
- PGM sintering resistance
- ORR/HOR (PEM Fuel Cells) and OER/HER (PEM-WE) at low overpotentials \checkmark

THANK YOU!

robson.monteiro@cbmm.com

EXPLORE THE WORLD OF NIOBIUM niobium.tech

ACBMM Niobium N5