

Niobium Technology for Clean Energy 9th-14th, November, 2021, Web. Meeting

Highly Durable and Active Cathode Catalysts using Niobium for Polymer Electrolyte Fuel Cells

Hydrogen supply chain toward the achievement of decarbonization

NEDO New Energy and Industrial Technology Development Organization

https://hem-2021.nedo.go.jp/_en/

Introduction

Design concept

Performance

Trend of fuel cells technologies for transportation

D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More, R.L. Borup, A.Z. Weber, D.J. Myers, A. Kusoglu, Nature Energy 6 (2021) 462-474. Copyright permission from Springer Nature

PEFCs will be developed to meet the requirements of the heavy-duty vehicle market (in transportation) with the higher efficiency and durability.

Introduction

Design concept

Performance

Essential factor toward the improvement of fuel cell performance

Polymer electrolyte fuel cell

Overpotential (@1.0 A cm⁻² 80°C) Anode : $H_2 \rightarrow 2H^+ + 2e^-$ Cathode : $2H^++1/2O_2+2e^- \rightarrow H_2O$

The new electrocatalysts with higher activity and durability are required.

Introduction

Performance

(a)

Mass activity [A/mg_{PGM}]

15 г

10

5

0

0

Pt₅Y9nm

20

PdgAu@PtML/C.

Improvement of catalytic activity

M. Escudero-Escribano, K.D. Jensen, A.W. Jensen Current Opinion Electrochem., 8 (2018) 135-146. Copyright permission from Elsevier

Pt alloys, nanorods and nanowires are one of the candidate electrocatalysts for fuel cells.

Introduction

Design concept

Performance

Startup/shutdown & load cycle durability of Pt/Nb-SnO₂ is superior to that of Pt/GCB, which relies on the strong bonding between Pt and Nb-SnO₂ and well size control of Pt particle

Introduction

Design concept of new cathode catalyst for fuel cells

G. Shi, et al. ACS Catal.11 (2021) 5222.

Introduction

Design concept

Performance

Carbon support : Intrinsic thermodynamic instability

 $\text{C} + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}^{\scriptscriptstyle +} + 4\text{e}^{\scriptscriptstyle -} \ \text{E} = 0.207 \ \text{V} \ \text{SHE}$

Start up / shut down durability of Pt/Nb-SnO₂

Cell test : 80℃、80%RH 1.5V _60 7 Electrochemically active m² g⁻ Potential[V] 30s Pt/Nb-SnO₂ 2s ocv 500mV/s time[sec] Commercial 5000 times **area,** 20 Pt/GCB 1/2 of initial ECA of Pt/Nb-SnO₂ 1/2 of initial ECA surface of Pt/GCB a count count cound a consult of a consult of a consult of a consult 10⁸ 10² 10⁶ 10^{4} Number of potential step cycles, N / cycle Y. Chino, K. Taniguchi, Y. Senoo, K. Kakinuma, M. Watanabe, M. Uchida,

J. Electrochem. Soc. 162 (2015) 736.

Startup / shutdown durability of $Pt/Nb-SnO_2$ catalyst layers is superior to that of Pt/GCB catalyst layers and relies on the strong bonding between Pt and Nb-SnO₂.

Cell performance

2 nm

Future plan

Nb-SnO₂

Load cycle durability of Pt/Nb-SnO₂

Introduction

Design concept

Performance

Candidate catalyst	Electronic Conductivity	Catalytic Activity	Durability	Cost
Commercial Pt/Carbon	v	✓	✓	~
Pt/Graphitized carbon	v	✓	~	~
Pt/TiO ₂ + Carbon nanotube	v	✓	~	/
Pt/TiO ₂ -RuO ₂	v	~~	~~	/
Pt/Nb-SnO ₂	~ ~	~~~	~~~	~
	×10 (vs. Pt/Carbon)	× 3.2 (vs. Pt/Carbon)	× 5000 (vs. Pt/Carbon)	
Pt nanoparticlePt nanorodNb supportImage: Contract of the supportImage: Contract of the supportPt nanoparticlePt nanorodNb supportHigh dispersionPt orientation				
Introduction Design concept Performance Future plan				

Acknowledgement

This work was partially supported by funds for the New Energy and Industrial Technology Development Organization (NEDO) of Japan, and JSPS "KAKENHI" from MEXT.

Thank you very much for your kind attention I