

Nb based Technology for Clean Energy

Next-generation Li-ion Battery with Niobium-based Anode for Electrified Society

Yasuhiro Harada (Ph.D.)

Senior Fellow

Cooperate Research & Development Centre Toshiba Corporation

9th November 2021

Contents

01 Back Ground

02 Promising Anode Material NTO for Batteries

03 Performances of NTO Anode Battery

Back Ground

The Challenge of Carbon Neutrality by 2050

Reducing CO₂ gas from industry and transportation is key Next generation batteries are required for the electrified society

https://www.env.go.jp/earth/ondanka/ghgmrv/emissions/results/material/yoin_2018_2_1.pdf

What is SCiB[™]?

Unique Li-ion battery having Lithium Titanium Oxide(LTO) anode

Anode

Target Market Segment for SCiB™

Focus on heavy-duty areas where SCiB[™] can be useful, rather than simple energy storage applications

© 2021 Toshiba Corporation

Battery Demand Trend for MaaS

Toward realization of a highly mobile society (MaaS), create value that expands the battery business

Value Change

Mobility as a Service: MaaS

Increased vehicle ownership by service providers

Performance required for batteries

 High availability combined with ultra-fast charging

•long-term stable usage based high durability

Environmental Impacts by Battery Waste

Long life characteristic contributes to lower environmental impacts

Increased battery use and environmental considerations

Battery production will reach 1000GWh equivalent in 2030
 In a few years later, 5 million tons of battery waste is discharged every year

Reuse model to conserve resources and reduce waste

Key point:

Battery residual value diagnostic technology

Promising Anode Material NTO for Batteries

Target Energy Density for Next Generation Battery

Energy density / Wh kg⁻¹

Lack of sufficient energy density is the biggest weakness of Toshiba's battery.

Toshiba's challenge is to enhance the energy density with keeping attractive advantages of SCiB™ having LTO anode

What is Niobium?, What is NTO?

Niobium Titanium Oxide

✓ Rigid framework consisting of Nb ✓ Large spaces for Li ion storage Harmless and stable compound

Features of NTO Anode

	SCiB™	Conventional LIB	ΝΤΟ
Anode Materials			
	Lithium Titanium Oxide	Graphite	Niobium Titanium Oxide
Weight Capacity (mAh/g)	170	372	387
Volume Capacity (mAh/cm ³)	580	837	1680
Electrode Potential (V vs. Li+/Li)	1.55	0.2	1.6

NTO shows theoretical capacity in volume of Graphite x2, LTO x2.75

Comparison of Energy Density on Anode Materials

Battery Energy (Wh) = Capacity (Ah) × Battery Voltage (V)

Why NTO can deriver ultra-quick chargeability?

- 1. Lower strain during charging
 - Rigid framework of NTO Almost no structural change

- 2. Safety margin for Li⁺ dendrites
- Stable even under quick charging
 Lower safety risk at end of life
- ✓ No damage at low temperature

Performances of NTO Anode Battery

Performances of Trial Produced 49Ah NTO Battery

16

Suitable for High Rate Operation / Heavy Duty Application

High-rate operation and long-life with ultra-quick charging are very important to expand electrification in transportation and industrial sector

Future Initiatives for NTO Battery

Toshiba's technology \times NTO brings outstanding battery

Summary of NTO Battery

Type of cell	Conventional Li-ion (NCM)*	Conventional Li-ion (LFP)*	NTO**	SCiB™
Voltage	★★★ 3.6 V	★★ 3.2V	★ 2.3~2.4V	★ 2.3~2.4V
Energy density	★★★ ~500Wh/L	★★ ~300Wh/L	★★ ~300Wh/L	★ 100~200Wh/L
Cycle life (25℃)	★ Poor	★ → Fair	★★ Good	★★★ Excellent
Quick charging	★ 30 min	★ 30 min	★★★ 6 min	★★★ 6 min
Low temperature	N/A	N/A	★★★ -30℃~	★★★ -30℃~
Safety (Li-dendrite)	Li-dendrite risk	Li-dendrite risk	★ ★ ★ No dendrite	★ ★ ★ No dendrite
Environmental Performance	★ Recycle	\star Recycle	★★ Reuse/Recycle	★★ Reuse/Recycle

* Benchmarked by Toshiba, ** Performances of trial produced cell

NTO can improve energy density comparable to LFP Li-ion battery

Toshiba, Sojitz and CBMM Partner to Commercialize Next-Generation Lithium-ion Batteries

- ✓ Joint development agreement has been concluded between 3 companies.
- This agreement is for the commercialization of next generation lithium-ion batteries using NTO as the anode material.
- This time, NTO battery will be installed on new electric vehicle designed by Volkswagen Caminhões e Ônibus as a pilot project and parties will collect the valuable vehicle operation data.

TOSHIBA

"No Nb, No NB, then No NB ! "

No Niobium, No New Battery, then No New Business

Thank you for your attention!!

e-mail: yasuhiro3.harada@toshiba.co.jp

