

Niopinw N2

不同铌添加量对涡轮增压器 球墨铸铁(DCI)的力学及显 微组织效应

JJean A. Brambila* - Nb Consulting - 机械工程理学硕士

Francisco Manoel P. Nascimento - Metaprol - Metalurgia e Produtividade LTDA Denílson José do Carmo - SENAI / CETEF - Centro Tecnológico de Fundição Marcelino Corradi - 物理冶金学博士 Wendel de Carvalho Torres - SENAI / CETEF - Centro Tecnológico de Fundição Marcelino Corradi - 材料工程理学硕士

Jean A. Brambila* - Nb Consulting - 机械工程理学硕士

Francisco Manoel P. Nascimento - Metaprol - Metalurgia e Produtividade LTDA

Denílson José do Carmo - SENAI / CETEF - Centro Tecnológico de Fundição Marcelino Corradi - 物理冶金学博士 Wendel de Carvalho Torres - SENAI / CETEF - Centro Tecnológico de Fundição Marcelino Corradi - 材料工程理学硕士

// Maio2021 // www.niobium.tech // Copyright © 2021 CBMM

球墨铸铁(以下简称 DCI)是铸造工程中广泛使用的一种材料,由于其低成本、良好的铸造性能以及高 抗氧化性和高温强度,它的性能对汽车工业的零部件制造非常有吸引力,如涡轮壳体、排气歧管和其 他部件。然而,近期,由于降低二氧化碳排放限量的新目标,需要不断提高内燃机的性能,这一趋势 凸显了改进这种合金的必要性,不仅是对于它的最高温度范围,还有它的热和力学特性。商业上称为 SiMo和SiMoCr的DCI最高温度极限约为850℃。能达到更高循环温度的替代材料为奥氏体不锈钢和铁素 体不锈钢。然而,它们的成本高昂,而且存在低铸造性和机械加工性方面的问题。因此,使用如铌(Nb) 的合金元素,可对DCI SiMo进行有必要对标准进行的改进。

据观察, 铌可以促进 NbC 碳化铌的形成。随着合金中铌含量的增加,此类碳化物的数量和尺寸都会增加。本研究将考虑不同的铌添加量(0.096% Nb 和 0.17% Nb)对比涡轮增压器公司普遍使用的标准球墨铸铁 SiMoCr 的显微组织及力学效应。为了模拟和了解添加铌在涡轮壳体壁厚大范围的影响,在研究中分别铸造了两个不同厚度的试样(13 mm 和 25 mm)。研究者在室温425°C、800°C 和 850°C 下,测定了室温硬度(HB)、屈服强度、抗拉强度和伸长率。最后,研究者对重熔 5 次后的铌回收率进行了研究,以确定重熔过程中的铌损失率。

这种新型合金"SiMoCr+Nb"在室温和高温下都表现出良好的力学性能。室温下,它的硬度(HB)也小幅增加。但是,在几乎所有的高温测试中,它的强度和伸长率都有显著的提高。最后,据观察,铌回收率非常接近百分之百,这对铸造厂来说是非常好的消息。

*通讯作者。电话: +55(011)994038683 电子邮件地址: jbrambila@nbconsulting.com.br

1. 引言

由于球墨铸铁具有良好的力学性能和较低的成本, 几十年来已在多个行业中应用;其主要材料性能 是良好的热疲劳性能和高抗氧化性。所有球墨铸 铁的主要特征是石墨大致呈球形。这些球状石墨 起着止裂作用,使得铁更具韧性。由于组织中含 有较高比例的球状石墨,其力学性能由球墨铸铁 基体决定。如果基体为铁素体,与灰铸铁相比, 石墨球具有更高的拉伸和屈服强度,因而具有良 好的延展性和耐冲击性。

铁素体-珠光体基体是最常见的等级,其中石墨 球位于同时含有铁素体和珠光体得基体中;性能 介于铁素体和珠光体等级之间,机械加工性良好, 生产成本低。

珠光体基体使铁具有高静强度、良好的耐磨性以 及中等的延展性和抗冲击性。

对于某些特定的应用,基体也可以是马氏体,经 过淬火和回火热处理可防止珠光体形成,从而形 成极高的强度和耐磨性,但具有较低延展性和的 韧性。当需要良好的耐腐蚀和抗氧化性能以及高 温下的良好强度和尺寸稳定性时,可以使用奥氏 体基体。

对于高温应用,通常在铁素体球墨铸铁中加入硅 和钼可提高其高温力学性能。

合金元素对球墨铸铁力学性能的影响与此类元素 对基体中珠光体和铁素体含量的效应有关。合金 元素可以通过固溶强化提高铁素体的强度,也可 以通过减少层间距提高珠光体的强度。

由于它们对共析温度和相变动力学的效应,他们还可能影响珠光体和铁素体的相对含量。由于珠光体和铁素体的强化机制不同,通过合金获得的强化取决于基体的类型。在含有铁素体-珠光体混合基体的铁中,强化程度取决于铁素体和珠光体的相对含量⁽¹⁾。

硅(Si)的添加通常会导致铁素体基体的固溶强化,使其稳定,并形成抑制氧化的富硅表层。随着硅含量的增加,硅的抗氧化能力增强。

硅水平超过 4% 通常就足以防止在形成初始氧化 层后重量显著增加。此外,增加硅含量提高了室 温下的屈服强度和抗拉强度,降低了伸长率。但 是,据报告,当硅含量高于 5% 时,合金的延展 性会显著降低;因此,许多高温应用会使用添加 硅的球墨铸铁,其硅含量在 4% 到 5% 之间。硅 的固溶强化作用在 540°C 的高温下依然存在, 但高于此温度,高硅合金的抗拉强度就会降低。 钼 (Mo)是一种通过形成碳化物来强化球墨铸铁 的元素。这种碳化物的形成提高了抗拉强度、热 疲劳寿命和抗蠕变性能。然而,在许多组织应用 中,钼的添加量被限制在 1% 以内,以避免脆性 和收缩缺陷,从而最大程度提高抗热疲劳性能⁽²⁻⁶⁾。 研究还对铸铁的力学性能的不同方面进行了微观 分析。

铬(Cr)是一种珠光体稳定剂,添加量约为 0.70%,可提高合金的抗氧化性能。

据报告⁽²⁾,在球墨铸铁中添加碳化物形成元素钼 (Mo)、钒(V)和钛(Ti),会通过影响基体组织 强度和碳化物相的组成和分散性,影响球墨铸铁 的力学性能。铌可以形成一种极其坚硬的 MC 型 碳化物。添加铌可以精炼显微组织。

据观察,这种现象的发生是因为在非常高的温度 下形成的铌碳化物,它可以作为先共晶石墨析出 的核,也可以作为共晶群体的核。

铌降低了共晶凝固过程中以石墨形式析出的碳量, 从而提高了先共晶奥氏体的体积分数;这会导致 进一步强化⁽³⁾。然而,合金中其他元素的存在也 会改变共晶碳的含量,导致先共晶奥氏体含量发 生变化。硅和磷都可以大幅降低共晶碳含量,它 们 在 传 统 上 与 碳 当 量 (CE) 方 程 CE=%C(%Si+%P)/3 中的碳相关。从这个关系来看, 硅和磷在这方面是碳的替代品。

添加这些元素可以在共晶反应发生之前减少先共 晶奥氏体的形成。据报告,这些铁中的铌是在凝 固第一阶段的先共晶反应中形成的碳化铌 (NbC)。 这些致密碳化铌被称为一次碳化铌,存在于先共 晶基体中,而共晶碳化铌结晶为平面花瓣状或螺 旋状。

随着铌含量增加,针状碳化铌转变为致密颗粒。 由于碳化铌碳化物形成于共晶 M₂C₃碳化物之前, 一些可用碳优先作为碳化铌消耗。

在钢中, 铌最重要的现象之一就是热机械加工过 程中碳化铌或碳氮化铌 (NbCN) 的应变诱导析出 ⁽⁴⁾。这种纳米粒子的析出延缓了热变形过程中的 晶粒生长, 而铌微合金化获得了更精细的组织, 这反过来又代表了强度的提高⁽⁵⁾。此外, 研究还 观察到, 铌的加入改变了铌合金热作模具钢的铸 造组织, 降低了共晶团的尺寸和体积, 提高了钢 的最大硬度⁽⁶⁾。 在本研究中,在退火热处理下,标准 SiMoCr 的 理想化学组成为 3%C、4.8%Si、0.77%Cr、0.64%Mo 及其他合金元素。

尽管 SiMoCr 铸铁的最高工作温度被限制为 850°C,但其铸造工艺形成了致密而复杂的几何 形状,并降低了工艺和材料成本。此外,SiMoCr 等球墨铸铁具有高导热系数、低热膨胀系数和良 好的力学性能,这对于延长涡轮壳体和排气歧管 的超长使用寿命至关重要。

高导热系数降低了零件的热梯度,从而促进了在 热冲击下工作的零件的热应力水平的降低⁽⁸⁾。其 较低的热膨胀系数有助于避免因热疲劳而形成裂 纹。但是,为了提高 SiMoCr 的工作温度,有必 要使用铌等合金对 SiMoCr 的成分进行改性。

本研究制作了三种不同铌含量的合金,分别在室 温、425°C、800°C和850°C下对试样进行测 试,以验证铌对屈服强度、抗拉强度和伸长率的 效应。

铌与碳之间的高亲和性会形成坚硬稳定的碳化铌 (NbC) 颗粒,在室温和高温条件下,它能提高合 金的抗拉强度和屈服强度⁽¹¹⁾。

本研究旨在研究两种不同的铌添加量对球墨铸铁性能的影响,以提高合金球墨铸铁SiMoCr+Nb的热性能和力学性能

2. 实验步骤

2.1 铸造 DCI SiMoCr+Nb

该合金是在巴西 Senai Itaúna 铸造实验室里一座 100 kg 容量的感应炉中熔化的。

利用光学光谱测定法对熔化过程中材料的化学成 分进行了监测。砂型 Y 块取样片符合 ASTM A395、 A476/A476M、A536、A842 和 A897/A897M 标准。 加热炉炉料为高纯度原料、生铁、钢、FeSi、 FeMn、FeCr、FeMo,当装料达到 80% 时,加入铌 作为 FeNb (CBMM spec 111)。装料熔化后,倒出 试样进行化学分析。然后,添加校正所需的合金。 将液态金属加热到 1510°C,浇在球化钢包底部 (钢包高度 = 2 ×钢包直径)的球化合金上。

采用 FeSi 进行孕育处理,并采用 FeSiMg 进行 球化处理。

采用"夹心"法,即将球化合金和孕育合金置于 浇包底部,然后将熔化的金属从炉内转移到钢包 内。 最后,将合金浇注到砂型中,得到每种合金成分的 8 个试样和 2 种不同的厚度:13 mm 和 25 mm。Y 型块尺寸如图 1 所示。

图 1 - 根据 ASTM A 536 (ASTM, 2019) 确定的 Y 型块尺 寸。

图 2 - 铸态 Y 型块试样

2.2 准备试样

合金熔化脱模后,使用数控设备对 Y 型块进行加工,得到如图 3 所示的标准化测试体。

图 3 - ASTM A 536 1 型拉伸试样

2.3 热处理

采用热电偶对铸造进行温度控制。 热处理工艺周期如图 4 所示。

图 4 - 退火热处理工艺周期

热处理由一个单一的热循环构成,预热从室温加 热到 940°C,加热速率为 150°C /h,在 940°C 保持 4 小时,冷却阶段以 60°C /h 的 冷却速率进行,温度从 940°C 降到 750°C。最 后,在 750°C 时关闭熔炉,铸件在室温下继续 冷却。

3. 结果和讨论

将合金熔化并制备试样后,进行退火热处理,并 依次对添加铌和不添加铌的试样进行化学、金相 和力学分析。为了验证铸造材料的化学成分是否 符合一些原始设备制造商用于涡轮增压器的化学 成分,我们使用了一种涡轮增压器作为对比材料, 此处称之为 OEM 铸造。

表 1 为本文研究的 4 种不同铌含量(0.00% Nb、0.096% Nb 和 0.17% Nb)的球墨铸铁试样的化学成分,以及另一种 OEM(不含铌)参考样品。对四种试样进行了一次详细的化学和金相分析。

实验室生产的样品严格遵循了 OEM 样品的化学成分,只改变铌含量,符合本研究的目的。

Trial	о	Si	Mn	Р	S	Or	Мо	Ni	Nb	Mg	Sb
0.00% Nb	3.01	4.71	0.16	0.03	0.006	0.770	0.64	0.24	ND**	0.052	0.0046
0.09% Nb	2.98	4.85	0.17	0.03	0.010	0.780	0.62	0.27	0.096	0.046	0.0048
0.17% Nb	2.99	4.83	0.16	0.03	0.010	0.770	0.63	0.28	0.17	0.049	0.0036
OEM* casting	2.90	4.67	0.19	0.02	0.007	0.70	0.53	0.15	0.003	0.038	
表 1 - 化学分析。(OEM*) 原始设备制造商											

3.1 金相结果

对添加铌和不添加铌的所有试样进行了显微组织分析。下面的图 5 到图 10 展示了用 Nital 4% 蚀刻法对不含铌、添加 0.096% Nb 和 0.17% Nb 的试样进行金相分析的图像。对铸件厚度分别为 13 mm 和 25 mm 的 Y 型块试样进行了分析。下方表 2 和表 3 展示了对金相分析预估结果的 总结。

Sample	Graj	ohite	Nodules	Ferrite	
identification	% area	% Nodularity	n/mm²	% area	
0.00% Nb 13mm	10.8	84	130	80	
0.00% Nb 25mm	11.2	85	116	83	
0.09% Nb 13mm	10.6	82	85	78	
0.09% Nb 25mm	10.8	80	68	77	
0.17% Nb 13mm	10.7	87	143	77	
0.17% Nb 25mm	11.O	85	107	78	
表 2 - 石墨、	球状石墨和	铁素体的数	[量。	•	

Sample		Grap size,	ohite /dim		Primary Carbides	Secondary Carbides
identification	Т4	Т5	Т6	Т7	% area	% area
0.00% Nb 13mm		28	57	15	5	20
0.00% Nb 25mm		37	49	14	7	17
0.09% Nb 13mm		59	31	10	7	22
0.09% Nb 25mm	3	61	25	11	7	23
0.17% Nb 13mm		19	68	13	5	23
0.17% Nb 25mm		42	44	14	5	22

表 3 - 石墨晶粒大小,一次碳化物和二次碳化物的面积 %。

从所有铸造材料的 13 mm 和 25 mm 的 Y 型块获 得了试样的显微组织表征。测试的参数符合 ASTM 1095 标准。

应指出的是,测试达到所有标准;唯一观察到的问题是一次碳化物(%):ASTM 1095 规定该值最大应为 5%,但记录的值在 5% 到 7% 之间。

结果显示,当试样的铌添加量为 0.17% 时,一次 碳化物含量保持在 ASTM 标准范围内。

考虑到添加了 0.17% Nb, 与标准 DCI 相比, 石墨球化率和球状石墨的数量有较小但重要的提高。

图 5 - DCI 标准, 0.00% Nb, Y 型铸造, 厚度 13mm。

图 6 - DCI 0.096% Nb, Y 型铸造, 厚度 13mm。

图 7 - DCI 0.17% Nb, Y 型铸造, 厚度 13mm。

图 8 - DCI 0.00% Nb, Y 型铸造, 厚度 25mm。

图 9 - DCI 0.096% Nb, Y 型铸造, 厚度 25mm。

图 10 - DCI 0.17% Nb, Y 型铸造, 厚度 25mm。

但当铌添加量为 0.096% 时,可以看到石墨球化 率和球状石墨的数量都降低了。产生这种变化的 一个可能原因是球化和孕育过程,而且,对每种 铌含量进行一次独特的热处理的样本量非常低, 这可能会影响结果,这一事实也应加以考虑。 从图 11 和图 12 中可以看出,球状石墨的数量 略有增加,相对于基线和 0.096% Nb,0.17% Nb 合金的球化率也略高。

图 11 - 石墨显微组织,无蚀刻 (100x)

图 12 - 石墨显微组织,无蚀刻 (1000x)

在图 13 中,在更高的清晰度(1000x)下,铌碳 化物呈均匀分布,并被钼碳化物包围。

图 13 - NbC 碳化物。

图 14 - 石墨和显微组织, 4% Nital 蚀刻 (100x)

图 14 显示的试样与图 11 相同,但使用 Nital 4% 进行蚀刻。以铁素体基体为主,并且可见二 次碳化物的析出和分布。

图 15 - 石墨显微组织, 4% Nital 蚀刻 (1000x)

1000x 分辨率的图 15 更好地代表了沿基体均匀 分布的铌碳化物以及钼碳化物。图 16 显示了涉 及一些试样的 SEM 程序。

图 16 - SEM 的 1 至 4 点指向铌碳化物, 5 点指向钼碳 化物。

图 18 - 点 2 的 EDS 能谱

	Mg	Si	Ti	Cr	Mn	Fe	Nb	Мо
70-2020(4)_pt1		0.61	4.32	1.06		22.66	71.36	
70-2020(4)_pt2	0.58	1.15	4.58	1.22		23.49	68.98	
70-2020(4)_pt3			5.73	1.80		4.84	87.63	
70-2020(4)_pt4		0.50	5.44	1.31		11.64	81.11	
70-2020(4)_pt5		2.77		6.59	0.62	74.99		15.02
表 4 - 从上述点 1 到点 5 收集的 EDS 点的化学成分。								

表 4 显示了对图 17 到 21 的 EDS 结果的总结。

3.1显微硬度结果

对每个试样进行了 8 次硬度测试。这些测试是根据 ASTM A 1095 标准,在半自动布氏硬度计 (Heckert - 3000kgf 载荷,以及直径为 10mm 的球形压头)中进行的。

图 16 - 硬度 (HB)

图 16 显示了本研究中各种 DCI 在室温下的硬度 测量结果。需要指出的是,这些结果表明,当铌 为 0.096%、13mm 和 0.17%、25mm 时,试样的硬 度值有增加的趋势。

3.2力学性能:屈服强度、抗拉强度和伸 长率

从现在起,对于 13mm 和 25mm 的 Y 型块试片铸 件将有一系列的结果来展示其在室温 25°C 以及 最高达 425°C、800°C 和 850°C 下的屈服强 度、抗拉强度和伸长率(%)。

3.2.1 室温 (25°C)

从图 17 可以看出,在向 DCI 中添加铌后,屈服 强度和抗拉强度略有提高。当铌为 0.17% 时,效 应最大(比无铌 DCI 值提高 4.5%)。这与二次 碳化物和铌碳化物的增加有关。

注意, 屈服强度和抗拉强度是在铸态和退火态试 样上测量的, 分别为 13mm 和 25mm。

加入铌后, DCI 的伸长率趋于增加(见图 18); 值得注意的是,与 13 mm 和 25 mm 基线相比, 当 0.17% Nb 分别添加到 95% 和 80% 时,伸长 率显著提高。

而铸态材料的伸长率几乎保持不变。

3.2.2 - 高温 425°C

在图 19 中,与 DCI SiMoCr 基线相比,0.17% Nb 和 25 mm 时合金的屈服强度和抗拉强度显著 提高。在 13 mm 试样中可以观察到一些波动,强 度有所下降。

在图 20 中,伸长率也出现了同样的趋势,在添加了所有铌的情况下,13 mm 厚度的伸长率值出现了波动。但是,在添加 0.17% Nb 后,25 mm 厚度的伸长率有上升趋势。

图 19 - 425°C 时的屈服强度和抗拉强度。

在图 20 中,值得注意的是,由于添加了 0.096% Nb,伸长率有所下降。相反地,当添加 0.17% Nb 时,伸长率有所提高。另外还观察到,在 0.096% Nb 13mm 和 0.00% Nb 25mm 试样中,同样试样中的值存在较大的偏差。

3.2.3-高温 800°C

从图 21 可以看出,添加铌后,屈服强度和抗拉强度有提高。0.17% Nb、13 mm 无铌合金的 DCI 值比基线合金高 58%,25 mm 合金的 DCI 值比基线合金高 40%。

图 21 - 800°C 时的屈服强度和抗拉强度。

但是,图 22 显示,在 800°C 高温下进行测试 时,随着铌含量的增加,DCI 的伸长率出现了波 动。由于结果并不清晰,因此不能进行任何假设。 对于某些测量来说偏差太大,可能会影响任何正 确的结论。

3.3 铌回收率

3.2.4-高温 850°C

从图 23 可以看出,添加铌后,屈服强度和抗拉强度有提高。

图 23 - 800°C 时的屈服强度和抗拉强度。

0.17% Nb 13mm 和 0.096% Nb 25mm 的最大效应 值分别为 25% 和 60%。

在图 24 中,值得注意的是,在厚度分别为 25% 和 30% 的情况下,添加 0.17% Nb 时伸长率大幅提高,这可能是由于球化水平的提高造成的。

从含 0.17% Nb 的 Y 型块返样中收集了用于计算 重熔五次后残余铌百分比的基材。

熔化后的材料在 1600°C 时保持 5 分多钟, 然 后收集一个试样进行分析。

经过 5 次重熔后,观察发现,在整个重熔过程中 铌损失并不大,废材中所含的铌几乎 100% 可以 回收。

Sample	с	Mn	Р	s	Cr	Nb
Rec.Nb1	2.984	0.175	0.034	0.019	0.764	0.163
Rec.Nb2	2.873	0.177	0.034	0.019	0.761	0.162
Rec.Nb3	2.852	0.178	0.033	0.020	0.759	0.163
Rec.Nb4	2.880	0.177	0.034	0.020	0.758	0.165
Rec.Nb5	2.852	0.176	0.033	0.019	0.756	0.165

表 5 - 铌回收率

4. 结论

与标准球墨铸铁 (DCI) SiMoCr 相比,向 DCI SiMoCr 显微组织中添加少量铌 (0.096% 和 0.17%)有 助于显著提高高温下的屈服强度、抗拉强度以及伸长率。

在 DCI 显微组织中加入 0.17% Nb, 主要有助于提高屈服强度、抗拉强度和伸长率,不仅是在室温下, 在 425°C、800°C 和 850°C 的高温测试下也是如此。在高温下,大多数涡轮增压器的应用都需要考 虑合金的热容量和抗蠕变性能;结果表明,添加 0.17% Nb 能显著提高合金的力学性能。

添加 0.096% Nb 和 0.17% Nb 后,硬度分别提高了约 3% 和 8%。

需要重点强调的是,一些结果显示出较高的测量偏差。为了最大程度减少这些偏差,我们强烈建议未 来的试验应该以生产规模进行,以重现这些结果并证明这一概念。

- 1. D. Vanugopalan and A. Alagarsamy: AFS Trans., 1990, 98, 395–400.
- 2. Sawamoto, K. Ogi and K. Matsuda: AFS Trans., 1986, 94, 403–416.
- X. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A. Guo, Q. Zhai Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron, Mater. Sci. Eng. A 688 (2017) 416–428.
- 4. B. Dutta, E.J. Palmiere and C.M. Sellars, Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels, Acta Materialia, 49, 2001, 785-794.
- 5. J.D. Boyd, The Microstructure and Properties of a Quenched and Tempered Low-Carbon-Manganese-Niobium Steel, Metallurgical Transactions A, 7, 1976, 1577–1586.
- 6. S. Kheirandish and A. Noorian, Effect of niobium on Microstructure of cast AISI H13 Hot Work Tool Steel, Journal of Iron and Steel Research, International, 15(4), 2008, 61-66.
- P. Matteis, G. Scavino, A. Castello, D. Firrao, "High-cycle fatigue resistance of Si-Mo ductile cast iron as affected by Temperature and strain rate", Metall and Materi Trans A, vol.46A, p. 4086-4094, 2015.
- 8. A. Bedolla-Jacuinde, E. Solis and B. Hernandez Effect of niobium in medium alloyed ductile cast irons (Article in International Journal of Cast Metals Research January 2003).
- Hardy Mohrbacher, Xiangru Chen, Long Zhao, Wei Zhang, Wenjun Wang, Aimin Guo, Qijie Zhai Effects of niobium alloying on microstructure, toughness and wear resistance of austempered ductile iron. (Materials Science & Engineering A 760 (2019) 186–194).
- 10. Tânia Nogueira Fonseca Souza, Rogéria Alves Perilo Sousa Nogueira, Francis José Saldanha Franco, Maria Teresa Paulino Aguilar, Paulo Roberto Cetlin - Mechanical and Microstructural Characterization of Nodular Cast Iron (NCI) with Niobium Additions.
- 11. Hardy Mohrbacher On the metallurgical effects of Niobium in cast iron alloys Niobelcon bvba, 2970 Schilde, Belgium.
- 12. A. Bedolla-Jacuinde Niobium in Cast Irons (http://dx.doi.org/10.5772/64498).
- Cristiana Delprete, Raffaella Sesana Experimental characterization of a Si-Mo-Cr ductile cast iron. Materials and Design 57 (2014) 528–537.

CBMM | Niopinum N2

作为铌产品生产和商业化领域的全球领先企业,CBMM的客户遍布了40多个国家。公司总部设在巴西, 并在中国、荷兰、新加坡、瑞士和美国设有办事处和子公司,为基础设施、交通、航空航天和能源领 域提供产品和尖端技术。CBMM于 1955 年成立于米纳斯吉拉斯州的阿拉沙市,并依靠一个强大的技术 项目增加铌的应用,从而使这一市场不断发展和多元化。

更多铌科技领域前沿资讯请搜索www.niobium.tech/mobility 请关注铌科技微信公众号